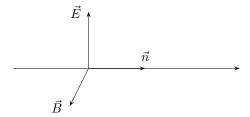
Ce document est mis à disposition selon les termes de la licence Creative Commons « Attribution – Partage dans les mêmes conditions 4.0 International ». https://www.immae.eu/cours/

Optique géométrique

I Cadre de l'optique géométrique

A) La lumière, onde électromagnétique

Lumière Transport d'énergie sous forme d'onde électromagnétique dans le vide ou dans un milieu transparent.



 \vec{B} : champ magnétique; \vec{E} : champ électrique; \vec{n} : direction de propagation

 $\vec{E}, \vec{B}, \vec{n}$ forment un trièdre triorthogonal direct.

 \vec{E} est une fonction de M et du temps. $\vec{E}(M,t)$

M est repéré par ses coordonnées (x, y, z) donc $\vec{E}(x, y, z, t)$.

B) Onde plane progressive

Onde plane Les champs \vec{E} et \vec{B} sont identiques en tout point d'un plan x= cte (perpendiculaire au plan de propagation), appelé plan d'onde. Dans ce cas, \vec{E} ne dépend que de x et de t.

Onde plane progressive

$$\vec{E}(x,t) = \underbrace{\vec{E}\left(t - \frac{x}{v}\right)}_{\text{OPP} \to} + \underbrace{\vec{E}\left(t + \frac{x}{v}\right)}_{\text{OPP} \leftarrow} \tag{1}$$

À $t' = t + \Delta t$ en $x' = x + \Delta x$ (on ne considère que l'onde de gauche à droite) :

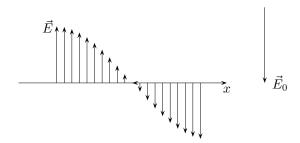
$$\vec{E}(x,t) = \vec{E}(x',t') \iff \vec{E}\left(t - \frac{x}{v}\right) = \vec{E}\left(t' - \frac{x'}{v}\right) \iff t - \frac{x}{v} = t' - \frac{x'}{v} \iff \Delta t = \frac{\Delta x}{v} \iff \Delta x = v \times \Delta t$$
(2)

Donc v est la célérité de l'onde électromagnétique plane progressive.

On suppose OPP \rightarrow polarisé rectilignement (c'est-à-dire direction de \vec{E} constante)

$$\vec{E}(x,t) = \vec{E}_0 \times f\left(t - \frac{x}{v}\right) \tag{3}$$

À t donné:



C) Nature spectrale de la lumière

D'après le théorème de Fourier, toute onde plane progressive peut s'écrire comme une superposition d'ondes planes progressives monochromatiques (de gauche à droite, polarisées rectilignement).

$$\vec{E} = \vec{E}_0(\omega) \times \cos(\omega t - kx + \varphi(\omega)) = \vec{E}_0(\omega) \times \cos\left(\omega (t - \frac{k}{\omega}x) + \varphi(\omega)\right)$$

$$= \vec{E}_0(\omega) \times \cos\left(\omega (t - \frac{x}{v}) + \varphi(\omega)\right)$$
(4)

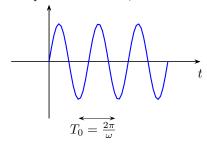
Avec $v = \frac{\omega}{k}$

$$OPP = \Sigma OPPM \tag{5}$$

$$\vec{E}(t - \frac{x}{v}) = \sum_{\omega} \vec{E}_0(\omega) \times \cos(\omega t - kx + \varphi(\omega))$$
 (6)

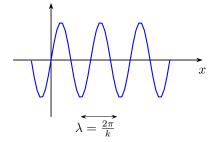
Une OPPM est périodique dans le temps et dans l'espace :

• temporelle : à x fixé, on fait varier t



Fonction périodique de pulsation ω , de période $T=\frac{2\pi}{\omega}$ et de fréquence $\nu=\frac{1}{T}=\frac{\omega}{2\pi}$. ω,ν et T sont indépendantes du milieu traversé.

• spatiale : à t fixé, on fait varier x



Fonction périodique de module de vecteur d'onde k, de longueur d'onde $\lambda=\frac{2\pi}{k}$ et de nombre d'onde $\sigma=\frac{1}{\lambda}=\frac{k}{2\pi}.$ k,σ,λ dépendent du milieu traversé

Célérité de l'OPPM:

$$v = \frac{\omega}{k} = \frac{2\pi/T}{2\pi/\lambda} = \frac{\lambda}{T} \tag{7}$$

v dépend du milieu dans lequel se trouve l'onde (via λ).

Dans le vide, la célérité d'une onde lumineuse est égale à une constante (valeur exacte) :

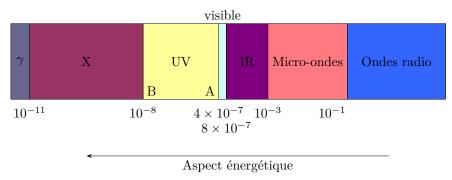
$$c = 299792.458 \,\mathrm{km \, s^{-1}} \approx 3.00 \times 10^5 \,\mathrm{km \, s^{-1}}$$
 (8)

On note λ_0 la longueur d'onde dans le vide :

$$\lambda_0 = c \times T \tag{9}$$

L'ensemble des pulsations ω ou longueur d'onde dans le vide λ_0 est appelé spectre de l'onde lumineuse.

Spectre électromagnétique



D) Propagation dans un milieu matériel

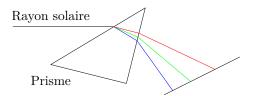
Milieu matériel homogène isotrope (=toutes directions équivalentes) transparent, noté MIHT. Dans un MIHT, l'onde lumineuse se propage dans une direction appelée rayon lumineux : \longrightarrow On définit un indice optique du MIHT : $n=\frac{c}{v}$ (c dans le vide, v dans le MIHT). Donc $n\geqslant 1$

Exemples

- Air 1.000 29 (dans les CNTP)
- Eau 1.33
- Verre crown 1.52
- Verre Flint 1.67
- Diamant > 2

 $n=\frac{c}{v}=\frac{\lambda_0/T}{\lambda/T}=\frac{\lambda_0}{\lambda}$ (λ dépend du MIHT (n) et de l'onde $(\lambda_0))$

Un milieu est dit dispersif lorsque n dépend de λ :



E) Approximation de l'optique géométrique

On néglige les phénomènes d'interférence et de diffraction

• source (ou objet lumineux ponctuel) :

• Image lumineuse ponctuelle : point de convergence d'un ensemble de rayons lumineux.

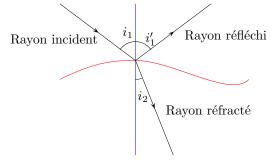
Principe du retour inverse de la lumière (dans un MIHT voire MIT) : un rayon partant de A vers B suivra exactement le même chemin qu'un rayon partant de B vers A.



II Lois de Snell-Descartes

A) Définitions

Dioptre surface qui sépare deux MIHT d'indices différents



Plan d'incidence défini par le rayon incident et la normale

- Une partie du rayon est réfléchie : réflexion
- Une partie du rayon est réfractée : réfraction
- Le milieu 1 est dit moins réfringent que le milieu 2 si $n_1 < n_2$ et vice versa.
- i_1 : angle d'incidence

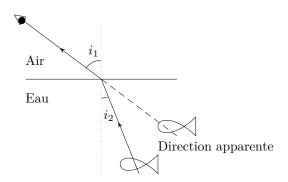
• i_2 : angle de réfraction

• i'_1 : angle de réflexion

B) Lois de Snell-Descartes

- Les rayons réfléchis et réfractés appartiennent au plan d'incidence.
- $i'_1 = i_1$ (loi de la réflexion)
- $n_1 \sin(i_1) = n_2 \sin(i_2)$ (loi de la réfraction)

Exemple:



C) Réflexion totale

La proportion d'énergie lumineuse réfléchie et réfractée dépend de i_1, n_1, n_2 .

Cas particulier:

$$n_1 \sin(i_1) = n_2 \sin(i_2) \iff \sin(i_2) = \frac{n_1}{n_2} \sin(i_1) \implies \frac{n_1}{n_2} \sin(i_1) \leqslant 1 \iff \sin(i_1) \leqslant \frac{n_2}{n_1}$$
 (10)

 1^{er} cas $n_2 \geqslant n_1$

 $\sin(i_1) \leqslant \frac{n_2}{n_1} \implies$ On a toujours le phénomène de réfraction.

 $2^{\text{ème}}$ cas $n_2 < n_1$

 $\sin(i_1) \leqslant \frac{n_2}{n_1}$ n'est pas toujours vérifié :

$$0 < \frac{n_2}{n_1} < 1 \implies \exists \theta \in]0; 2\pi[, \frac{n_2}{n_1} = \sin \theta \tag{11}$$

$$0 < \frac{n_2}{n_1} < 1 \implies \exists \theta \in]0; 2\pi[, \frac{n_2}{n_1} = \sin \theta$$

$$\sin i_1 \leqslant \frac{n_2}{n_1} \iff \sin i_1 \leqslant \sin \theta \iff 0 \leqslant i_1 \leqslant \theta$$

$$(11)$$

Conclusion:

Si $0 \le i_1 \le \theta$, la réfraction est possible

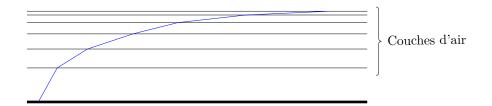
Si $\theta \leq i_1 \leq \frac{\pi}{2}$, la réflexion est totale.

Application:

Fibres optiques à saut d'indice.

D) Milieu d'indice variable (principe des mirages)

On néglige la courbure de la Terre.



$$n_0 \sin i_0 = n_1 \sin i_1 \tag{13}$$

$$n_1 \sin i_1 = n_2 \sin i_2 \tag{14}$$

$$\dots n \sin i_n = \text{cte}$$
 (15)

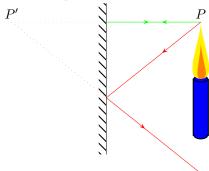
Quand z est faible, la température diminue en se rapprochant du sol.

Donc $\rho(z) = \frac{k \times T(z)}{P} \implies \rho(z)$ est croissante donc n(z) croît (donc i(z) décroît).

III Miroir plan

A) Construction des rayons réfléchis par un miroir plan

Surface métallique réfléchissante ; défauts de dimension inférieure à λ .



Le prolongement des rayons réfléchis converge en P', symétrique de P par rapport au plan du miroir. P' est l'image de P par réflexion sur le miroir plan. C'est une image virtuelle.

B) Stigmatisme rigoureux du miroir plan

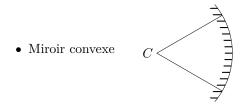
Le miroir plan est rigoureusement stigmatique : formation d'une image P' quelle que soit la position de P, quelle que soit l'inclinaison des rayons issus de P.

IV Miroir sphérique

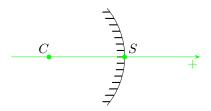
A) Définition

Miroir sphérique calotte sphérique recouverte d'un métal réfléchissant.





Axe optique axe de symétrie de la calotte sphérique passant par C, centre de la portion de sphère et S le sommet du miroir.



- $R = \overline{SC} < 0$ pour un miroir concave
- $R = \overline{SC} > 0$ pour un miroir convexe

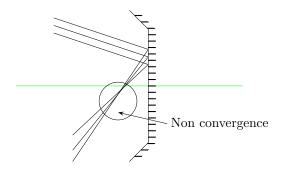
 ${\cal R}$ est le rayon de courbure

Symboles

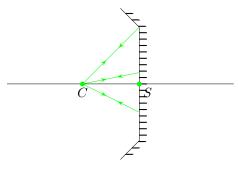
B) Étude du stigmatisme du miroir sphérique

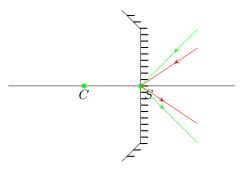
1) Cas général

Le miroir sphérique est astigmatique



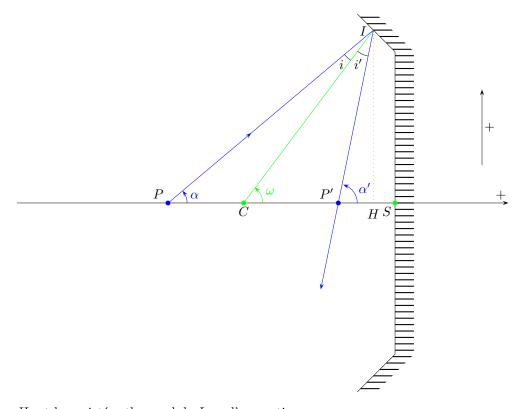
2) Stigmatisme au centre et au sommet





 $\begin{array}{c} \text{Au sommet}: \\ \text{Les rayons convergent en } S, \\ \text{image de lui-même par le} \\ \text{miroir sphérique} \end{array}$

3) Stigmatisme approché sur l'axe optique



 ${\cal H}$ est le projeté orthogonal de ${\cal I}$ sur l'axe optique

Pour le triangle CPI:

$$\alpha + i + (\pi - \omega) = \pi \tag{16}$$

$$\alpha + i - \omega = 0 \tag{17}$$

Pour le triangle CP'I:

$$\omega + i' + (\pi - \alpha') = \pi \tag{18}$$

$$\omega + i - \alpha' = 0 \tag{19}$$

Donc
$$\begin{cases} \omega = \alpha + i \\ \omega + i' = \alpha' \end{cases}$$
 soit $2\omega + i' = \alpha + \alpha' + i$

D'après la loi de Snell-Descartes, i = i'

Donc $2\omega = \alpha + \alpha'$

$$\tan \alpha = \frac{\overline{HI}}{\overline{PH}}$$

$$\tan \alpha' = \frac{\overline{HI}}{\overline{P'H}}$$

$$\tan \omega = \frac{\overline{HI}}{\overline{CH}}$$
(20)

Pour des rayons peu inclinés par rapport à l'axe optique (c'est-à-dire $\alpha, \alpha', \omega \ll 1 \text{ rad}$), on peut considérer que $\alpha \approx \tan \alpha$, $\alpha' \approx \tan \alpha'$, $\omega \approx \tan \omega$, $H \approx S$ (plan sphérique \approx plan tangent)

$$\frac{2\overline{H}\overline{I}}{\overline{C}\overline{H}} = \frac{\overline{H}\overline{I}}{\overline{P}\overline{H}} + \frac{\overline{H}\overline{I}}{\overline{P'}\overline{H}} \iff \frac{2}{\overline{C}S} = \frac{1}{\overline{P}S} + \frac{1}{\overline{P'}S} \iff \boxed{\frac{1}{\overline{SP}} + \frac{1}{\overline{SP'}} = \frac{2}{\overline{SC}}}$$
(21)

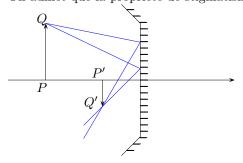
(Formule de conjugaison au sommet du miroir sphérique)

Donc P' est indépendant de α

Tous les rayons peu inclinés passent par P' après réflexion sur le miroir sphérique. Donc P' est image de P par le miroir \rightarrow stigmatisme approché.

4) Aplanétisme

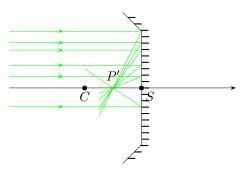
On admet que la propriété de stigmatisme approché reste vraie au voisinage de l'axe optique.



P est la projection de Q sur l'axe optique, P' celle de Q'. P' est aussi l'image de P par le miroir sphérique. Grandissement $\gamma = \frac{\overline{P'Q'}}{\overline{PQ}}$

C) Foyers d'un miroir sphérique

Foyer principal On considère un objet à l'infini produisant un faisceau de lumière parallèle et parallèle à l'axe optique.



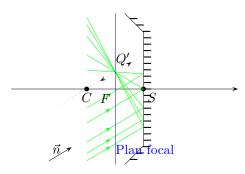
$$\frac{1}{\overline{SP}}+\frac{1}{\overline{SP'}}=\frac{2}{\overline{SC}}$$
 et $SP=\infty$ donc $\overline{SP'}=\frac{\overline{SC}}{2}$

Foyer F = P' au milieu de [CS]

Distance focale $\overline{SF} = f \implies f = \frac{\overline{SC}}{2} = \frac{R}{2}$

Plan focal Plan passant par F perpendiculaire à l'axe optique.

Foyers secondaires



Q' appartient au plan focal, $Q' = F_S$. Q' est un foyer secondaire (angle faible) $\vec{n} = \overrightarrow{CF_s}$ lié à la direction des faisceaux.

D) Réalité et virtualité des images formées par le miroir sphérique

$$\frac{1}{\overline{SP'}} = \frac{2}{\overline{SC}} - \frac{1}{\overline{SP}} = \frac{1}{\overline{SF}} - \frac{1}{\overline{SP}} = \frac{\overline{SP} - \overline{SF}}{\overline{SF} \cdot \overline{SP}} = \frac{\overline{FP}}{\overline{SF} \cdot \overline{SP}}$$
(22)

1) Concave $f = \overline{SF} < 0$

Cas où l'objet P est réel $(\overline{SP} < 0)$

$$\overline{SF} \times \overline{SP} > 0 \tag{23}$$

$$\operatorname{Sgn}\left[\frac{1}{\overline{SP'}}\right] = \operatorname{Sgn}\left[\overline{FP}\right] \tag{24}$$

Donc l'image P' est réelle si et seulement si $\overline{FP} < 0$ (P avant le foyer)

Cas où l'objet P est virtuel $(\overline{SP} > 0)$

 $\overline{SP'}$ a le signe de \overline{PF} . Donc l'image est réelle (car $\overline{PF} < 0$)

L'image est donc toujours réelle sauf si P est entre F et S.

2) Convexe $f = \overline{SF} > 0$

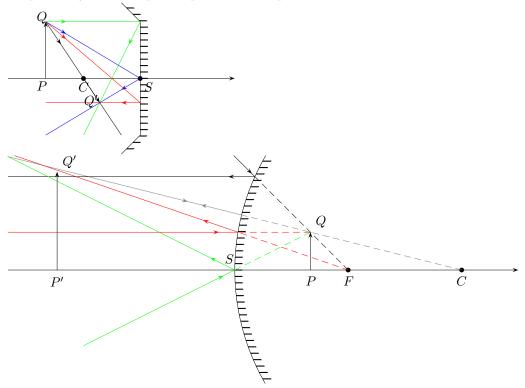
Si P est réel $(\overline{SP} < 0)$, $\overline{SP'}$ a le signe de \overline{PF} donc l'image est virtuelle

Si P est virtuel $(\overline{SP} > 0)$, l'image est réelle lorsque $P \in [SF]$ et virtuelle sinon.

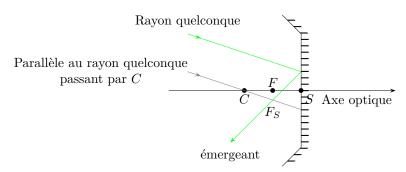
E) Construction

1) Construction d'image

Construction graphique de l'image de P, situé sur l'axe optique. On prend un point Q à la verticale de P: quatre rayons remarquables permettent de placer Q'.



2) Construction du rayon émergeant

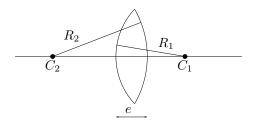


(Il faut trouver le foyer secondaire, le rayon émergeant passe par ce point)

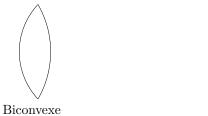
V Lentilles minces

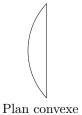
A) Définition

C'est un bloc de MIHT séparé par deux dioptres dont un au moins est sphérique :

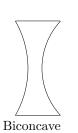


Pour une lentille mince, $e \ll R_2$ et R_1





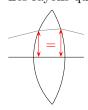
Lentilles convergentes



Lentilles divergentes

Propriétés

• Les rayons qui traversent une lentille mince ne sont pas décalés.

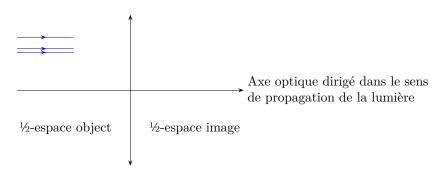


(Le décalage est négligeable)

 $\bullet\,$ Les rayons passant par O, centre de la lentille, ne sont pas déviés.

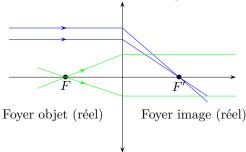
• On admet le stigmatisme approché sur / à proximité de l'axe optique (rayons faiblement inclinés) et l'aplanétisme.

B) Foyers



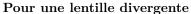
- L'objet est réel si, et seulement si, il appartient au ½-espace objet
- L'objet est virtuel si, et seulement si, il appartient au ½-espace image
- L'image est réelle si, et seulement si, elle appartient au ½-espace image
- L'image est virtuelle si, et seulement si, elle appartient au ½-espace objet

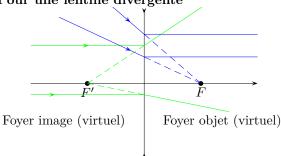
Pour une lentille convergente



Remarque:

O est le milieu de [FF']





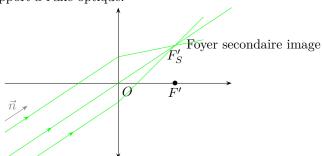
Distance focale (image) : $f'(\text{ou } f) = \overline{OF'}$

Une lentille est convergente si et seulement si f' > 0

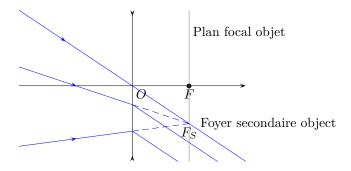
Une lentille est divergente si et seulement si f' < 0

On définit la vergence = 1/f' (en m⁻¹)

Foyers secondaires points de convergence, appartenant au plan focal, d'un faisceau de lumière inclinés par rapport à l'axe optique.

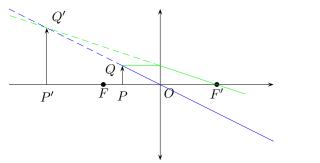


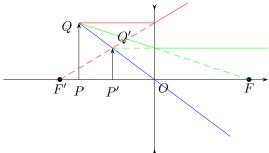
$$\vec{n} \approx \frac{\overrightarrow{OF_S'}}{\overrightarrow{OF_S'}} = \frac{\overrightarrow{OF_S'}}{f'}$$
 (25)



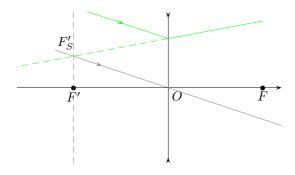
C) Construction

1) Par une lentille mince



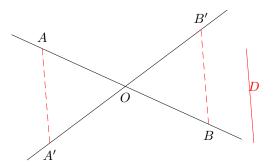


2) Du rayon émergeant



D) Formule de conjugaison

1) Triangles semblables

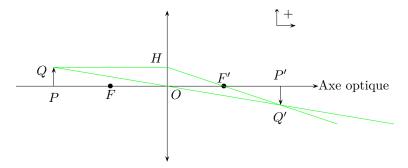


D'après le théorème de Thalès,

$$\frac{\overline{AA'}}{\overline{BB'}} = \frac{\overline{AO}}{\overline{BO}} = \frac{\overline{A'O}}{\overline{B'O}}$$
 (26)

Les triangles OAA' et OBB' sont semblables.

2) Formule de Descartes



On pose $\gamma = \frac{\overline{P'Q'}}{\overline{PQ}}$ (grandissement)

OPQ et OP'Q' sont semblables.

On a donc :

$$\gamma = \frac{\overline{P'Q'}}{\overline{PQ}} = \frac{\overline{P'O}}{\overline{PO}} \tag{27}$$

F'OH et F'P'Q' sont semblables.

On a donc aussi:

$$\gamma = \frac{\overline{P'Q'}}{\overline{OH}} \tag{28}$$

soit

$$\gamma = \frac{\overline{P'Q'}}{\overline{OH}} = \frac{\overline{P'F'}}{\overline{OF'}} = \frac{\overline{P'O} + \overline{OF'}}{\overline{OF'}} = \frac{\overline{P'O}}{f'} + 1$$
 (29)

D'où

$$\frac{\overline{P'O}}{\overline{PO}} = \frac{\overline{P'O}}{f'} + 1 \iff \frac{1}{\overline{PO}} = \frac{1}{f'} + \frac{1}{\overline{P'O}} \iff \boxed{\frac{1}{\overline{OP'}} - \frac{1}{\overline{OP}} = \frac{1}{f'}}$$
(30)

(P, P') est un couple de points conjugués.

P est l'image de P' pour des rayons se déplaçant en sens inverse.

VI Systèmes centrés

A) Définitions

Système centré association de dioptres, lentilles, miroir dont l'axe optique est commun.

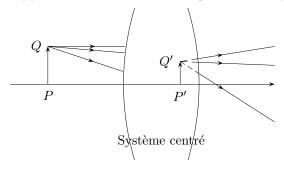
Un système centré est dit dioptrique (à l'inverse de catadioptrique) lorsqu'il ne contient pas de miroir.

B) Conditions de Gauss

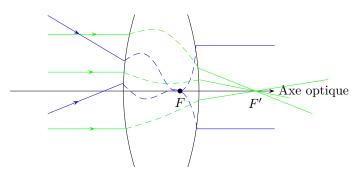
On est dans les conditions de Gauss lorsque :

- l'objet et l'images sont sur / à proximité de l'axe optique
- les rayons sont peu inclinés par rapport à l'axe optique

Approximation de Gauss stigmatisme et aplanétisme approchés



C) Foyers



F : foyer objet du système centré

F' : foyer image du système centré