Ce document est mis à disposition selon les termes de la licence Creative Commons « Attribution – Partage dans les mêmes conditions 4.0 International ». https://www.immae.eu/cours/



# Chapitre 2 : Intégrale sur un segment d'une fonction continue par morceaux

Toutes les fonctions considérées sont à valeurs réelles. a et b désignent deux réels, avec a < b

# I Intégrale des fonctions en escalier

# A) Subdivisions

#### Définition:

On appelle subdivision de [a,b] toute suite finie  $(a_0,a_1,\ldots a_n)$  telle que  $a=a_0< a_1<\cdots< a_n=b$ . Si  $\sigma=(a_0,a_1,\ldots a_n)$  et  $\sigma'=(a_0',a_1',\ldots a_m')$  sont deux subdivisions de [a,b], on dit que  $\sigma'$  est plus fine que  $\sigma$  lorsque  $\{a_0,a_1,\ldots a_n\}\subset \{a_0',a_1',\ldots a_m'\}$ 

Si  $\sigma = (a_0, a_1, \dots a_n)$  et  $\sigma' = (a'_0, a'_1, \dots a'_m)$  sont deux subdivisions quelconques de [a, b], il est clair qu'on peut toujours fabriquer une subdivision plus fine que  $\sigma'$  et que  $\sigma$  en réordonnant les points de l'ensemble  $\{a_0, a_1, \dots a_n\} \cup \{a'_0, a'_1, \dots a'_m\}$ .

## B) Fonctions en escalier

# Définition:

On dit qu'une fonction f définie sur [a,b] est en escalier sur [a,b] s'il existe une subdivision  $\sigma = (a_0, a_1, \ldots a_n)$  de [a,b] telle que f soit constante sur chaque intervalle ouvert  $]a_{i-1}, a_i[$ , i allant de 1 à n.

## Vocabulaire:

La subdivision  $\sigma$  est alors dite subordonnée à la fonction en escalier f.

On voit que si f est une fonction en escalier, et si  $\sigma$  est une subdivision subordonnée à f, alors toute subdivision plus fine que  $\sigma$  est subordonnée à la fonction f.

Comme une fonction en escalier sur [a, b] ne prend qu'un nombre fini de valeurs, elle y est bornée.

# Proposition:

Étant données deux fonctions f et g en escalier sur [a,b], de subdivisions subordonnées respectives  $\sigma$  et  $\sigma'$ , toute subdivision  $\sigma''$  plus fine que  $\sigma$  et  $\sigma'$  est subordonnée à la fois à f et à g. Il est alors clair que toute combinaison linéaire de f et g, ainsi que le produit fg, sont en escalier sur [a,b], de subdivision subordonnée  $\sigma''$ .

De là, il résulte que l'ensemble des fonctions en escalier sur [a, b] (qui contient les fonctions constantes sur [a, b], donc en particulier la constante 1) est une sous algèbre de la  $\mathbb{R}$ -algèbre des fonctions définies sur [a, b] (et à valeurs dans  $\mathbb{R}$ ).

# C) Intégrale des fonctions en escalier

### Proposition:

Soit f en escalier sur [a,b], et soit  $\sigma=(a_0,a_1,\ldots a_n)$  une subdivision subordonnée à f. Notons, pour tout i de [1,n],  $y_i$  la valeur constante prise par f sur l'intervalle ouvert  $]a_{i-1},a_i[$ . Alors la valeur prise par le nombre  $I(f,\sigma)=\sum_{i=1}^n(a_i-a_{i-1})y_i$  ne dépend pas du choix de la subdivision  $\sigma$  subordonnée à f.

# Démonstration (Idée):

On peut d'abord montrer aisément que si  $\sigma'$  se déduit de  $\sigma$  en ajoutant un point, alors  $I(f, \sigma') = I(f, \sigma)$ .

De là, on montre par récurrence sur le nombre de points ajoutés que si  $\sigma'$  est plus fine que  $\sigma$ , alors  $I(f, \sigma') = I(f, \sigma)$ .

Enfin, dans le cas général, on introduit une subdivision  $\sigma''$  plus fine que  $\sigma'$  et  $\sigma$ , et on a alors  $I(f,\sigma')=I(f,\sigma'')=I(f,\sigma)$ .

### Définition:

On peut donc définir l'intégrale de f sur [a,b] comme étant la valeur de  $I(f,\sigma)$ , indépendante du choix de la subdivision  $\sigma$  subordonnée à f. Cette intégrale est notée  $\int_{[a,b]} f$ . Ainsi, avec les notations précédentes :  $\int_{[a,b]} f = \sum_{i=1}^n (a_i - a_{i-1}) y_i$ .

Cette définition correspond à une vision « géométrique » de l'intégrale : somme des aires algébriques des rectangles délimités par la courbe de f et l'axe Ox.

On peut remarquer au passage que l'intégrale d'une fonction constante sur [a,b] est k(b-a) où k est la valeur de cette constante.

#### Propriétés:

On montre aisément que cette intégrale des fonctions en escaliers a les propriétés suivantes : (f et g désignent deux fonctions en escalier sur [a,b], et  $\lambda$  et  $\mu$  deux réels)

- Positivité : si  $f\geqslant 0$  sur [a,b], alors  $\int_{[a,b]}f\geqslant 0$
- Linéarité :  $\int_{[a,b]} \lambda f + \mu g = \lambda \int_{[a,b]} f + \mu \int_{[a,b]} g$
- Additivité : Si a < c < b, alors  $\int_{[a,b]} f = \int_{[a,c]} f + \int_{[c,b]} f$  (on vérifie aisément que f est bien en escalier sur [a,c] et [c,b]).
- Si  $f \leq g$  sur [a, b], alors  $\int_{[a,b]} f \leq \int_{[a,b]} g$  (propriété de croissance déduite de la linéarité et de la positivité)

# II Fonctions intégrables

Soit f une fonction définie sur [a,b], que l'on suppose bornée. On peut donc introduire sup f et inf f. Soit  $\mathscr{E}^-(f)$  l'ensemble des fonctions  $\varphi$  en escalier sur [a,b] plus petites que f (c'est-à-dire telles que  $\varphi \leqslant f$ ). Soit  $\mathscr{E}^+(f)$  l'ensemble des fonctions  $\psi$  en escalier sur [a,b] plus grandes que f (c'est-à-dire telles que  $f \leq \psi$ ).

Les ensembles  $\mathscr{E}^-(f)$  et  $\mathscr{E}^+(f)$  sont non vides :  $\mathscr{E}^-(f)$  contient la fonction constante égale à  $\inf f$ , et  $\mathscr{E}^+(f)$  la fonction constante égale à  $\sup f$ .

Soit  $\mathscr{A}^-(f)$  l'ensemble des intégrales des fonctions en escalier de  $\mathscr{E}^-(f)$ .

Soit  $\mathscr{A}^+(f)$  l'ensemble des intégrales des fonctions en escalier de  $\mathscr{E}^+(f)$ .

Les ensembles  $\mathscr{A}^-(f)$  et  $\mathscr{A}^+(f)$  sont donc des ensembles non vides de réels, et de plus tout élément de  $\mathscr{A}^-(f)$  est inférieur à tout élément de  $\mathscr{A}^+(f)$ : en effet, si  $\varphi$  et  $\psi$  sont deux fonctions en escalier sur [a,b] telles que  $\varphi\leqslant f\leqslant \psi$ , alors  $\varphi\leqslant \psi$  et par croissance de l'intégrale des fonctions en escalier, on a  $\int_{[a,b]}\varphi\leqslant \int_{[a,b]}\psi$ .

Donc  $\mathscr{A}^-(f)$  admet une borne supérieure, notée  $I^-(f)$ , et  $\mathscr{A}^+(f)$  une borne inférieure, notée  $I^+(f)$ . Ainsi,  $I^-(f) \leq I^+(f)$ .

# Définition:

Si il y a égalité entre ces deux bornes, on dit que f est intégrable sur [a, b], et on appelle l'intégrale de f sur [a, b] la valeur commune de ces bornes.

Dans le cas contraire, ou si f n'est pas bornée sur [a,b], on dira que f n'est pas intégrable sur [a,b]. Cette définition de l'intégrabilité est l'intégrabilité au sens de Riemann.

On peut noter que, selon cette définition, les fonctions en escalier sont bien intégrables sur [a,b], et que leur intégrale au sens de cette définition coı̈ncide avec leur intégrale au sens de la définition du paragraphe précédent (en effet, il suffit de voir que, lorsque f est en escalier, f appartient à  $\mathscr{E}^-(f)$  et à  $\mathscr{E}^+(f)$ ...)

Enfin, si f est intégrable sur [a, b], son intégrale sur [a, b] est notée  $\int_{[a, b]} f$ , ou  $\int_a^b f$  ou encore  $\int_a^b f(t) dt$  (dans la dernière notation, t est une variable muette, elle peut prendre n'importe quel autre nom).

On voit que la définition correspond encore bien à une vision « géométrique » de l'intégrale : aire algébrique de la surface délimitée par la courbe de f et l'axe Ox.

# III Fonctions continues par morceaux

# A) Définition et généralités

#### Définition:

Soit f une fonction définie sur [a,b]. On dit que f est continue par morceaux sur [a,b] s'il existe une subdivision  $\sigma = (a_0, a_1, \dots a_n)$  de [a,b] telle que :

Pour chaque i de 1 à n, f est continue sur l'intervalle ouvert  $]a_{i-1}, a_i[$ , admet une limite finie à droite en  $a_{i-1}$  et une limite finie à gauche en  $a_i$ .

La subdivision  $\sigma$  est alors dite subordonnée à la fonction continue par morceaux f.

On voit que si f est continue par morceaux sur [a, b], et si la subdivision  $\sigma$  est subordonnée à f, alors toute subdivision plus fine que  $\sigma$  est subordonnée à la fonction f.

Il est clair que f est continue par morceaux sur [a, b] si et seulement si f ne présente qu'un nombre fini de points de discontinuité (voire aucun...), en lesquels f admet néanmoins des limites finies à droite et à gauche (à droite seulement pour a et à gauche seulement pour b).

Soit f une fonction continue par morceaux sur [a, b], et soit  $(a_0, a_1, \dots a_n)$  une subdivision subordonnée à f. Alors, pour chaque i de [1, n], la restriction de f à l'intervalle ouvert  $]a_{i-1}, a_i[$  est prolongeable par continuité en une fonction  $f_i$  continue sur le segment  $[a_{i-1}, a_i]$ .

Il en résulte qu'une fonction continue par morceaux sur [a,b] y est bornée : en effet, avec les notations précédentes, pour chaque i de [1,n], la fonction  $f_i$  est continue sur le segment  $[a_{i-1},a_i]$ , donc bornée sur ce segment. Comme les points  $a_i$  sont en nombre fini, f est bornée sur [a,b], un majorant de |f| étant :

$$\max\left(|f(a_0)|, |f(a_1)|, \dots |f(a_n)|, \sup_{[a_0, a_1]} |f_1|, \sup_{[a_1, a_2]} |f_2|, \dots \sup_{[a_{n-1}, a_n]}\right)$$
(2.1)

On montre, comme pour les fonctions en escalier que toute combinaison linéaire ou produit de fonctions continues par morceaux sur [a, b] est encore continue par morceaux sur [a, b]. De là, on tire que les fonctions continues par morceaux sur [a, b] forment une sous algèbre de la  $\mathbb{R}$ -algèbre des fonctions définies sur [a, b].

# B) Encadrement par des fonctions en escalier

### Théorème:

Soit f une fonction continue par morceaux sur [a,b]. Alors, pour tout réel strictement positif  $\varepsilon$ , il existe une fonction en escalier  $\varphi$  sur [a,b] telle que  $|f-\varphi| \le \varepsilon$ .

#### Démonstration:

• Commençons par le cas où f est continue sur [a,b]. Soit  $\varepsilon > 0$ .

Comme f est uniformément continue sur le segment [a,b] (théorème de Heine), il existe  $\alpha>0$  tel que :

$$\forall x \in [a, b], \forall x' \in [a, b], (|x - x'| < \alpha \implies |f(x) - f(x')| < \varepsilon)$$
(2.2)

On considère un entier naturel non nul n tel que  $\frac{b-a}{n} < \alpha$ , et la subdivision régulière  $\sigma = (x_0, x_1, \dots x_n)$  de [a, b] définie par :

$$\forall k \in [0, n], x_k = a + kh, \quad \text{avec } h = \frac{b - a}{n} \text{ (pas de la subdivision régulière } \sigma)$$
 (2.3)

On considère alors la fonction  $\varphi$  en escalier définie par :

$$\forall k \in [1, n], \forall t \in [x_{k-1}, x_k], \varphi(t) = f(x_{k-1}) \text{ et } \varphi(t) = f(t)$$
 (2.4)

Alors  $|f - \varphi| \le \varepsilon$ Soit  $t \in [a, b]$ 

 $\diamond$  Si t = b, alors  $|f(b) - \varphi(b)| = 0 \leqslant \varepsilon$ 

- $\diamond \text{ Sinon, il existe } k \in \llbracket 1, n \rrbracket \text{ tel que } t \in [x_{k-1}, x_k[.$  Alors  $|f(t) \varphi(t)| = |f(t) f(x_{k-1})| < \varepsilon$ , la dernière inégalité venant du fait que, pour  $t \in [x_{k-1}, x_k[, \text{ on a } |t x_{k-1}| \leq \underbrace{x_k x_{k-1}}_{t} < \alpha$
- Si maintenant f n'est que continue par morceaux : On introduit une subdivision  $\sigma = (a_0, a_1, \dots a_m)$  subordonnée à f, et, pour chaque i de [1, m], on considère la fonction  $f_i$  comme introduite au début de la section, qui est continue sur le segment  $[a_{i-1}, a_i]$  et qui coïncide avec f sur  $]a_{i-1}, a_i[$ . Étant

donné  $\varepsilon > 0$ , on applique alors le résultat précédent à chaque fonction  $f_i$  pour construire, sur chaque segment  $[a_{i-1}, a_i]$  une fonction en escalier  $\varphi_i$  telle que  $\forall t \in [a_{i-1}, a_i], |f_i(t) - \varphi_i(t)| \leq \varepsilon$ . On peut ensuite construire une fonction  $\varphi$  définie sur [a, b] par :

$$\forall i \in [0, m], \varphi(a_i) = f(a_i) \tag{2.5}$$

et

$$\forall i \in [1, m], \forall t \in ]a_{i-1}, a_i[, \varphi(t) = \varphi_i(t). \tag{2.6}$$

Alors  $\varphi$  est évidemment en escalier sur [a,b], et  $|f-\varphi| \leq \varepsilon$ .

Autre énoncé du théorème, plus commode pour la suite :

## Théorème (variante):

Soit f une fonction continue par morceaux sur [a, b]. Alors, pour tout réel strictement positif  $\varepsilon$ , il existe deux fonctions en escalier  $\varphi$  et  $\psi$  sur [a, b] telles que :

$$\varphi \leqslant f \leqslant \psi \text{ et } \psi - \varphi \leqslant \varepsilon$$
 (2.7)

Les deux énoncés reviennent au même, car si  $\varphi$  est une fonction en escalier telle que  $|f - \varphi| \leq \varepsilon$ , alors les fonctions  $\varphi' = \varphi - \varepsilon$  et  $\psi' = \varphi + \varepsilon$  sont en escalier et on a  $\varphi' \leq f \leq \psi'$  et  $\psi - \varphi \leq 2\varepsilon$ , et inversement, si  $\varphi \leq f \leq \psi$  et  $\psi - \varphi \leq \varepsilon$ , alors évidemment  $|f - \varphi| \leq \varepsilon$ .

# C) Conséquence : intégrabilité

#### Théorème:

Toute fonction continue par morceaux sur [a, b] est intégrable sur [a, b].

# Démonstration :

Soit f une fonction continue par morceaux sur [a, b].

Soit  $\varepsilon > 0$ . Selon le théorème précédent, on peut introduire deux fonctions en escalier  $\varphi$  et  $\psi$  sur [a,b] telles que  $\varphi \leqslant f \leqslant \psi$  et  $\psi - \varphi \leqslant \varepsilon$ .

Alors, en reprenant les notations de la définition du début du chapitre,  $\varphi \in \mathscr{E}^-(f)$  et  $\psi \in \mathscr{E}^+(f)$ , on a donc  $\int_{[a,b]} \varphi \leqslant I^-(f) \leqslant I^+(f) \leqslant \int_{[a,b]} \psi$ .

Par linéarité et croissance des intégrales des fonctions en escalier, on a alors :

$$\int_{[a,b]} \varphi - \int_{[a,b]} \psi = \int_{[a,b]} \varphi - \psi \leqslant \int_{[a,b]} \varepsilon = (b-a)\varepsilon$$
(2.8)

Donc  $0 \le I^+(f) - I^-(f) \le (b - a)\varepsilon$ .

Comme cet encadrement est valable quel que soit le réel  $\varepsilon > 0$ , il en résulte, par passage à la limite, que  $I^+(f) - I^-(f) = 0$ .

Ainsi, par définition, f est intégrable sur [a, b].

# IV Compléments hors programme

#### Définition:

On dit qu'une fonction f définie sur [a,b] est réglée lorsque, pour tout réel strictement positif  $\varepsilon$ , il existe deux fonctions en escalier  $\varphi$  et  $\psi$  sur [a,b] telles que :

$$\varphi \leqslant f \leqslant \psi \text{ et } \psi - \varphi \leqslant \varepsilon$$
 (2.9)

Comme les fonctions en escalier sont bornées, il en résulte que toute fonction réglée est bornée. En regardant les résultat précédents, on remarque que le premier théorème s'énonce alors ainsi : « toute fonction continue par morceaux sur [a,b] » est intégrable, et, en regardant la démonstration du deuxième théorème, on voit qu'on peut énoncer le théorème : « toute fonction réglée sur [a,b] est intégrable ».

Continue par morceaux  $\implies$  réglée  $\implies$  intégrable  $\implies$  bornée.

Mais toutes les réciproques sont fausses :

On a donc les implications :

- Exemple de fonction bornée non intégrable. Soit f la fonction caractéristique de  $\mathbb{Q}$  sur [0,1] (c'est-à-dire f(x)=1 si  $x\in\mathbb{Q}$ , 0 sinon) Si  $\varphi$  est en escalier sur [0,1] et  $\varphi\leqslant f$ , alors sur tout intervalle  $]a_{i-1},a_i[$  d'une subdivision subordonnée à  $\varphi$ , la valeur constante prise par  $\varphi$  sera nécessairement inférieure ou égale à 0 puisque f prend la valeur 0 sur  $]a_{i-1},a_i[$  (qui contient des irrationnels). Donc  $I^-(f)\leqslant 0$ . De même,  $I^+(f)\geqslant 1$ , d'où la non intégrabilité de f (au sens de Riemann).
- Exemple de fonction non continue par morceaux, même non réglée, mais intégrable : Soit f définie sur [0,1] par  $f(x)=\sin\frac{1}{x}$  si  $x\neq 0$ , 0 sinon. Déjà, f n'est pas continue par morceaux puisqu'elle n'a pas de limite en 0. De plus, on ne peut pas trouver deux fonctions en escalier  $\varphi$  et  $\psi$  sur [0,1] telles que  $\varphi \leq f \leq \psi$  et  $\psi \varphi \leq 1$ . En effet, comme f prend les valeurs -1 et 1 sur tout intervalle  $[0,\alpha]$  avec  $0<\alpha \leq 1$ , si deux fonctions en escalier  $\varphi$  et  $\psi$  encadrent f alors sur le premier intervalle  $[0,a_1]$  d'une subdivision subordonnée à  $\varphi$  et  $\psi$ , les valeurs constantes prises par ces fonctions sont distantes d'au moins 2.

Cependant, soit  $\varepsilon$  tel que  $0 < \varepsilon < 1$ . Alors f restreinte à  $[\varepsilon, 1]$  est continue, donc encadrable, sur cet intervalle, par deux fonctions en escalier  $\varphi$  et  $\psi$  sur  $[\varepsilon, 1]$ , distantes d'au plus  $\varepsilon$ . Si on prolonge  $\varphi$  et  $\psi$  sur [0, 1] en prenant  $\varphi(t) = -1$  et  $\psi(t) = 1$  pour  $t \in [0, \varepsilon[$ , alors il est clair que  $\varphi$  et  $\psi$  sont en escalier sur [0, 1], que  $\varphi \le f \le \psi$ , et que :

$$\int_{[0,1]} \psi - \int_{[0,1]} \varphi = \int_{[0,\varepsilon]} \psi - \varphi + \int_{[\varepsilon,1]} \psi - \varphi \leqslant 2\varepsilon + (1-\varepsilon)\varepsilon \leqslant 3\varepsilon$$
 (2.10)

D'où, comme dans la fin de la démonstration du deuxième théorème :  $I^+(f) - I^-(f) = 0$ .

• Exemple de fonction non continue par morceaux, qui est pourtant réglée. Soit f définie sur [0,1] par  $f(x) = \frac{1}{\lfloor \frac{1}{2} \rfloor}$  si  $x \neq 0$ , 0 sinon.

Alors f n'est pas continue par morceaux, car elle a une infinité de points de discontinuité (les  $\frac{1}{n}$  pour  $n \in \mathbb{N} \setminus \{0\}$ ). Cependant, on peut facilement l'encadrer à n'importe quel  $\varepsilon$  près par des fonctions en escalier (voir sur un graphique : pour n assez grand (tel que  $\frac{1}{n} < \varepsilon$ ), on encadre f sur  $\left[0, \frac{1}{n}\right]$  par les constantes 0 et  $\frac{1}{n}$ , et on conserve f sur  $\left[\frac{1}{n}, 1\right]$ )

Ainsi, f est réglée, et aussi intégrable. (d'intégrale  $I = \frac{\pi^2}{6} - 1$ ).