Ce document est mis à disposition selon les termes de la licence Creative Commons « Attribution – Partage dans les mêmes conditions 4.0 International ». https://www.immae.eu/cours/

Chapitre 7: Fonctions polynomiales, racines

Ici, K est un corps commutatif quelconque.

I Fonction polynomiale

Définition:

Soit $P \in \mathbb{K}[X]$, $P = \sum_{k \in \mathbb{N}} a_k X^k$ où les a_k sont nuls à partir d'un certain rang. La fonction polynomiale associée à P est la fonction :

$$\tilde{P}: \mathbb{K} \longrightarrow \mathbb{K}
x \longmapsto \tilde{P}(x) = \sum_{k \in \mathbb{N}} a_k x^k$$
(7.1)

Attention: $P \in \mathbb{K}[X]$, c'est un polynôme formel, $\tilde{P} \in \mathcal{F}(\mathbb{K}, \mathbb{K})$, c'est une fonction polynomiale.

Théorème:

Soit $x \in \mathbb{K}$. Alors, pour tous $P_1, P_2 \in \mathbb{K}[X]$ et tout $\lambda \in \mathbb{K}$:

$$P_1 + P_2(x) = \tilde{P}_1(x) + \tilde{P}_2(x)$$
 (7.2)

$$\widetilde{P_1 \times P_2}(x) = \widetilde{P}_1(x) \times \widetilde{P}_2(x) \tag{7.3}$$

$$\widetilde{\lambda P_1}(x) = \lambda \widetilde{P}_1(x) \tag{7.4}$$

$$\tilde{1}(x) = 1_{\mathbb{K}} \tag{7.5}$$

(La démonstration est immédiate).

On en tire alors les identités :

$$\widetilde{P_1 + P_2} = \widetilde{P}_1 + \widetilde{P}_2 \tag{7.6}$$

$$\widetilde{P_1 \times P_2} = \tilde{P}_1 \times \tilde{P}_2 \tag{7.7}$$

$$\widetilde{\lambda P_1} = \lambda \tilde{P}_1 \tag{7.8}$$

$$\tilde{1} = 1_{\mathscr{F}(\mathbb{K}, \mathbb{K})} \tag{7.9}$$

(Car $\forall x \in \mathbb{K}, \widetilde{P_1 + P_2}(x) = (\tilde{P}_1 + \tilde{P}_2)(x)$, et de même pour les autres).

Ainsi, l'application $\mathbb{K}[X] \longrightarrow \mathscr{F}(\mathbb{K},\mathbb{K})$ est un morphisme de l'anneau $(\mathbb{K}[X],+,\times)$ vers l'anneau $P \longmapsto \tilde{P}$

 $(\mathcal{F}(\mathbb{K},\mathbb{K}),+,\times).$

II Racines

A) Définition et caractérisation formelle

Soit $P \in \mathbb{K}[X]$ et $\lambda \in \mathbb{K}$.

On dit que λ est une racine (dans \mathbb{K}) de P lorsque $\tilde{P}(\lambda) = 0_{\mathbb{K}}$.

Théorème:

Soit $P \in \mathbb{K}[X]$ et $\lambda \in \mathbb{K}$. Alors λ est racine de P si et seulement si $(X - \lambda)$ divise P.

Démonstration:

Déjà, $(X - \lambda)$ est non nul.

On peut donc faire la division euclidienne de P par $(X - \lambda) : P = (X - \lambda)Q + R$, où $Q \in \mathbb{K}[X]$ et $R \in \mathbb{K}_0[X]$, soit $R = r \in \mathbb{K}$. Donc $P = (X - \lambda)Q + r$. Donc $\tilde{P} = (X - \lambda)\tilde{Q} + \tilde{r}$, d'où $\tilde{P}(\lambda) = 0_{\mathbb{K}} \times \tilde{Q}(\lambda) + r = r$. Donc λ est racine de P si et seulement si r = 0 soit si $(X - \lambda)$ divise P.

B) Multiplicité

Définition:

Soit $P \in \mathbb{K}[X] \setminus \{0_{\mathbb{K}}\}.$

Soit λ un scalaire. On suppose que λ est racine de P. La multiplicité de λ dans P est, par définition,

$$m = \max\{k \in \mathbb{N}, (X - \lambda)^k \text{ divise } P\}. \tag{7.10}$$

La définition est bien correcte car l'ensemble est non vide (contient 1) et est majoré (par $\deg(P)$). On peut convenir que λ est de multiplicité 0 lorsque λ n'est pas racine de P.

C) Le premier théorème de factorisation

Théorème:

Soit $P \in \mathbb{K}[X] \setminus \{0_{\mathbb{K}}\}$. Soient $\lambda_1, \lambda_2, \dots \lambda_p$ des racines distinctes de P de multiplicités au moins égales à $\alpha_1, \alpha_2, \dots \alpha_p$.

Alors $\prod_{i=1}^{p} (X - \lambda_i)^{\alpha_i}$ divise P.

Démonstration:

Les polynômes $(X - \lambda_i, i \in [1, n]]$ sont irréductibles dans $\mathbb{K}[X]$ (car de degré 1). Ils tous distincts et unitaires, donc les $(X - \lambda_i)^{\alpha_i}$, $i \in [1, n]$ sont premiers entre eux. De plus, ils divisent tous P. Donc leur produit divise P.

Conséquence:

Soit $P \in \mathbb{K}[X] \setminus \{0_{\mathbb{K}}\}$ de degré $n \in \mathbb{N}$. Alors le nombre de racines de P (en les comptant selon leur multiplicité) est inférieur ou égal à n.

Démonstration:

Si P admet les racines $\lambda_1, \lambda_2, \dots \lambda_p$ distinctes avec les multiplicités $\alpha_1, \alpha_2, \dots \alpha_p$, alors $\prod_{i=1}^p (X - \lambda_i)^{\alpha_i}$, de degré $\sum_{k=1}^n \alpha_k$, divise P donc $\sum_{k=1}^n \alpha_k \leqslant n$.

Conséquence (pratique) :

Si $P \in \mathbb{K}_n[X]$, et si on a trouvé n+1 racines distinctes à P, alors P=0.

Conséquence:

On suppose $\mathbb K$ infini. Alors l'application $\mathbb K[X] \longrightarrow \mathscr F(\mathbb K,\mathbb K)$ est injective : $P \longmapsto \tilde P$

Si $\tilde{P} = \tilde{Q}$, alors $\tilde{P} - \tilde{Q} = 0_{\mathbb{K}}$, soit $\widetilde{P - Q} = 0_{\mathbb{K}}$, c'est-à-dire $\forall x \in \mathbb{K}$, $(\widetilde{P - Q})(x) = 0_{\mathbb{K}}$. Donc $\widetilde{P - Q}$ a une infinité de racines. Donc $P - Q = 0_{\mathbb{K}}$. Donc P = Q.

Dans la suite du chapitre, \mathbb{K} est un sous corps de \mathbb{C} . \mathbb{K} est donc infini (car il contient au minimum \mathbb{Q} puisqu'il contient 0 et 1 et est stable par +, \times et passage à linverse)

Ainsi, on a l'équivalence, pour tout $P, Q \in \mathbb{K}[X] : \tilde{P} = \tilde{Q} \iff P = Q$.

On peut donc retirer les ~ mais on distinguera $P = \sum_{k \in \mathbb{N}} a_k X^k$ et la fonction $x \mapsto P(x)$.

III Dérivation formelle

A) Définition

Définition:

Soit $P \in \mathbb{K}[X]$, $P = \sum_{k \in \mathbb{N}} a_k X^k$ où les a_k sont nuls à partir d'un certain rang.

Alors le polynôme dérivé de P est par définition le polynôme :

$$P' = \sum_{k \in \mathbb{N}^*} k a_k X^{k-1} \tag{7.11}$$

On définit par récurrence le polynôme dérivé \boldsymbol{n} fois de \boldsymbol{P} :

$$\begin{cases} P^{(0)} = P \\ \forall n \in \mathbb{N}^*, P^{(n+1)} = (P^{(n)})' \end{cases}$$
 (7.12)

Remarque:

Si on considère la fonction $\mathring{P} \colon \mathbb{R} \longrightarrow \mathbb{C}$, on remarque que $(\mathring{P})' = \hat{\overrightarrow{P}}'$.

B) Propriétés

Propriété:

1. Si $\deg P \leq n$, alors $P^{(n)}$ est constant, non nul si et seulement si $\deg P = n$.

2.
$$(P+Q)' = P' + Q'$$
, $(P+Q)^{(k)} = P^{(k)} + Q^{(k)}$

3.
$$(\lambda . P)' = \lambda . P'$$
, $(\lambda . P)^{(k)} = \lambda . P^{(k)}$

4.
$$(P \times Q)' = P'Q + PQ'$$
, $(PQ)^{(k)} = \sum_{i=0}^{k} {i \choose k} P^{(i)} Q^{(k-i)}$

5.
$$(P^m)' = mP'P^{m-1}, \quad (m \ge 1)$$

6.
$$(P(Q))' = Q' \times P'(Q)$$

Démonstration:

Si $P = a_n X^n + a_{n-1} X^{n-1} + \ldots + a_1 X + a_0$, alors $P' = n a_n X^{n-1} + (n-1) a_{n-1} X^{n-2} + \ldots + a_1$. Donc si $\deg P = n \geqslant 1$, alors $\deg P' = n - 1$, d'où par récurrence $\deg P^{(n)} = 0$. Et si $\deg P \in \{0, -\infty\}$, alors P' = 0.

Pour le deuxième point, on a : $\forall x \in \mathbb{R}$, (P+Q)'(x) = P'(x) + Q'(x). Donc (P+Q)' - P' - Q' a une infinité de racines, donc (P+Q)' = P' + Q'.

De même pour les produits, puis par récurrence pour les dérivées k-ièmes.

Pour le dernier point, la démonstration ne convient pas si Q n'est pas à coefficients réels. Dans ce dernier cas (et aussi dans les autres) :

$$P(Q) = \sum_{k \in \mathbb{N}} a_k Q^k. \tag{7.13}$$

Donc

$$(P(Q))' = \sum_{k \in \mathbb{N}^*} a_k k Q' Q^{k-1}$$
(7.14)

(d'après les points précédents), soit

$$(P(Q))' = Q' \sum_{k \in \mathbb{N}^*} a_k k Q^{k-1} = Q' P'(Q). \tag{7.15}$$

Remarque:

Ainsi,

$$D^{(i)}(X^p)(0) = \begin{cases} 0 & \text{si } i \neq p \\ p! & \text{si } i = p \end{cases}$$
 (7.17)

C) Formule de Taylor pour les polynômes

Théorème:

Soit P un polynôme, soit $n \in \mathbb{N}$ tel que $n \ge \deg P$. Alors pour tout $a, b \in \mathbb{K}$:

$$P(a+b) = P(a) + bP'(a) + \frac{b^2}{2!}P''(a) + \dots + \frac{b^n}{n!}P^{(n)}(a)$$
(7.18)

Démonstration:

Si a=0: on veut montrer que $\forall x \in \mathbb{K}, P(x)=P(0)+xP'(0)+\ldots+\frac{x^n}{n!}P^{(n)}(0)$. On a $P=\sum_{k=0}^n a_k X^k$. Donc pour tout $p \in \mathbb{N}$:

$$D^{(p)}(P) = \sum_{k=0}^{n} a_k D^{(p)}(X^k). \tag{7.19}$$

Donc $D^{(p)}(P)(0) = p!a_p$. Donc $a_p = \frac{D^{(p)}(P)(0)}{p!}$

Cas général : on pose Q(X) = P(a + X). Alors $\forall k \in \mathbb{N}, Q^{(k)}(X) = P^{(k)}(a + X)$ (car (a + X)' = 1). Donc $\forall x \in \mathbb{K}, Q(x) = \sum_{k=0}^{n} \frac{Q^{(k)}(0)}{k!} x^{k}$. Soit $\forall x \in \mathbb{K}, P(a + x) = \sum_{k=0}^{n} \frac{P^{(k)}(a)}{k!} x^{k}$.

Théorème (Plus général):

Soit $P \in \mathbb{K}[X]$. Soit $n \in \mathbb{N}$ tel que $n \ge \deg P$. Alors, pour tous $A, B \in \mathbb{K}[X]$:

$$P(A+B) = \sum_{k=0}^{n} \frac{P^{(k)}(A)}{k!} B^{k}.$$
 (7.20)

Démonstration:

Pour tout $x \in \mathbb{K}$, on a :

$$P(A(x) + B(x)) = \sum_{k=0}^{n} (B(x))^{k} \frac{P^{(k)}(A(x))}{k!}$$
(7.21)

(d'après le théorème précédent avec a=A(x) et b=B(x)). D'où l'égalité des polynômes formels P(A+B)et $\sum_{k=0}^{n} B^{k} \frac{P^{(k)}(A)}{k!}$ puisqu'ils coïncident sur \mathbb{K} .

D) Application à la multiplicité

Théorème:

Soient $P \in \mathbb{K}[X] \setminus \{0\}$, $\lambda \in \mathbb{K}$ et $k \in \mathbb{N}^*$. Alors λ est racine d'ordre au moins k de P si et seulement si :

$$P^{(0)}(\lambda) = P^{(1)}(\lambda) = \dots = P^{(k-1)}(\lambda) = 0$$
(7.22)

Par conséquent, λ est racine de P d'ordre exactement k si et seulement si :

$$P^{(0)}(\lambda) = P^{(1)}(\lambda) = \dots = P^{(k-1)}(\lambda) = 0$$
(7.23)

et

$$P^{(k)}(\lambda) \neq 0. \tag{7.24}$$

Démonstration:

Soit $n \in \mathbb{N}$ tel que $n \ge \deg P$ et $n \ge k$. Alors :

$$P(X) = P(\lambda + (X - \lambda)) \tag{7.25}$$

$$= \underbrace{P(\lambda) + (X - \lambda)P'(\lambda) + \dots + \frac{(X - \lambda)^{k-1}}{(k-1)!}P^{(k-1)}(\lambda)}_{\text{polynôme } R \text{ de degré } \leqslant k-1} + \underbrace{\dots + \frac{(X - \lambda)^n}{n!}P^{(n)}(\lambda)}_{\text{polynôme divisible par } (X - \lambda)^k}$$
(7.26)

Donc R est le reste dans la division euclidienne de P par $(X - \lambda)^k$. On a donc les équivalences :

$$\lambda$$
 est racine d'ordre au moins k de $P \iff (X - \lambda)^k$ divise P (7.27)

$$\iff R = 0 \tag{7.28}$$

$$\iff \sum_{i=0}^{k-1} (X - \lambda)^i \frac{P^{(i)}(\lambda)}{i!} = 0 \tag{7.29}$$

$$\iff \forall i \in [0, k-1], \frac{P^{(i)}(\lambda)}{i!} = 0$$
 (7.30)

Pour la dernière équivalence (l'un des sens étant évident) : si $\sum_{i=0}^{k-1} (X-\lambda)^i \frac{P^{(i)}(\lambda)}{i!} = 0$, alors $\forall x \in \mathbb{R}$ $\mathbb{K}, \sum_{i=0}^{k-1} (x-\lambda)^i \frac{P^{(i)}(\lambda)}{i!} = 0, \text{ donc } \forall y \in \mathbb{K}, \sum_{i=0}^{k-1} y^i \frac{P^{(i)}(\lambda)}{i!} = 0.$ Ainsi, $\sum_{i=0}^{k-1} X^i \frac{P^{(i)}(\lambda)}{i!} = 0, \text{ d'où } \forall i \in [\![0,k-1]\!], \frac{P^{(i)}(\lambda)}{i!} = 0.$

Ainsi,
$$\sum_{i=0}^{k-1} X^i \frac{P^{(i)}(\lambda)}{i!} = 0$$
, d'où $\forall i \in [0, k-1], \frac{P^{(i)}(\lambda)}{i!} = 0$

IV Polynôme scindé

A) Définition

Définition:

Soit $P \in \mathbb{K}[X]$, de degré $n \ge 1$.

On dit que P est scindé (dans \mathbb{K}) lorsque P a toutes ses racines dans \mathbb{K} , ce qui équivaut à dire que P admet exactement n racines dans \mathbb{K} en comptant les multiplicités et aussi à dire qu'il existe $p \in \mathbb{N}^*$, des éléments $\lambda_1, \lambda_2, \ldots \lambda_p$ de \mathbb{K} distincts, des éléments $\alpha_1, \alpha_2, \ldots \alpha_p$ de \mathbb{N}^* et $a \in \mathbb{K}^*$ tels que $P = a \prod_{i=1}^p (X - \lambda_i)^{\alpha_i}$ (théorème de factorisation), ou à dire qu'il existe n éléments $\mu_1, \mu_2, \ldots \mu_n$ de \mathbb{K} et $a \in \mathbb{K}^*$ tels que $P = a \prod_{i=1}^n (X - \mu_i)$.

Exemple:

 $X^3 - 1$ est scindé dans $\mathbb{C}[X]$ mais pas dans $\mathbb{R}[X]$.

B) Relations entre coefficients et racines pour un polynôme scindé

1) Fonctions symétriques élémentaires

Soit $n \in \mathbb{N}^*$. On définit les fonctions $\sigma_1, \sigma_2, \dots \sigma_n$ de \mathbb{K}^n dans \mathbb{K} par les formules :

$$\sigma_1(\lambda_1, \lambda_2, \dots \lambda_n) = \lambda_1 + \lambda_2 \dots + \lambda_n = \sum_{i=1}^n \lambda_i$$
 (7.31)

$$\sigma_2(\lambda_1, \lambda_2, \dots \lambda_n) = \lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \dots + \lambda_1 \lambda_n$$

$$+ \lambda_2 \lambda_3 + \dots + \lambda_2 \lambda_n$$

$$(7.32)$$

$$+\cdots + \lambda_{n-1}\lambda_n = \sum_{i < j} \lambda_i \lambda_j$$

$$\sigma_3(\lambda_1, \lambda_2, \dots \lambda_n) = \sum_{i < j < k} \lambda_i \lambda_j \lambda_k \tag{7.33}$$

$$\sigma_n(\lambda_1, \lambda_2, \dots \lambda_n) = \prod_{i=1}^n \lambda_i \tag{7.34}$$

Pour $k \in [1, n], \sigma_k(\lambda_1, \lambda_2, \dots \lambda_n) = \sum_{i_1 < i_2 < \dots < i_k} \lambda_{i_1} \lambda_{i_2} \dots \lambda_{i_k}$. Ces fonctions sont symétriques, au sens suivant :

Étant donnée $f: \mathbb{K}^n \to \mathbb{K}$, on dit que f est symétrique lorsque

$$\forall (x_1, x_2, \dots x_n) \in \mathbb{K}^n, \forall s \in \mathfrak{S}_n, f(x_{s(1)}, x_{s(2)}, \dots x_{s(n)}) = f(x_1, x_2, \dots x_n).$$
(7.35)

Ce sont les fonctions symétriques élémentaires sur n éléments en vertu d'un résultat (hors programme) : toutes les fonctions symétriques rationnelles sur n éléments sont fonctions rationnelles des σ_k .

2) Le résultat

Soit P un polynôme scindé de degré $n \ge 1$ de $\mathbb{K}[X]$, d'écriture développée $P = \sum_{k=0}^n a_k X^k$ et d'écriture factorisée $P = a_n \prod_{i=1}^n (X - \lambda_i)$.

Pour alléger, on notera σ_k pour $\sigma_k(\lambda_1, \lambda_2, \dots \lambda_n)$, pour tout $k \in [1, n]$. Les formules suivantes donnent un lien entre les σ_k et les a_k :

$$-a_n \sigma_1 = a_{n-1} \tag{7.36}$$

$$a_n \sigma_2 = a_{n-2} \tag{7.37}$$

$$\dots (-1)^k a_n \sigma_k = a_{n-k} \tag{7.38}$$

En effet:

$$\prod_{i=1}^{n} (X - \lambda_i) = X^n - (\lambda_1 + \lambda_2 \dots + \lambda_n) X^{n-1} + \sum_{i < j} \lambda_i \lambda_j X^{n-2}
+ \dots + (-1)^k \sum_{i_1 < i_2 < \dots < i_k} \lambda_{i_1} \lambda_{i_2} \dots \lambda_{i_k} X^{n-k}
+ \dots + \lambda_1 \lambda_2 \dots \lambda_n$$
(7.39)

3) Réciproque

Soient $u_1, u_2, \dots u_n \in \mathbb{K}$. Alors les solutions du système suivant, d'inconnues $x_1, x_2, \dots x_n$ dans \mathbb{K} :

$$\begin{cases}
\sigma_1(x_1, x_2, \dots x_n) &= u_1 \\
\sigma_2(x_1, x_2, \dots x_n) &= u_2 \\
\vdots & \vdots \\
\sigma_n(x_1, x_2, \dots x_n) &= u_n
\end{cases}$$
(7.40)

sont exactement les racines du polynôme :

$$P = X^{n} - u_{1}X^{n-1} + \dots + (-1)^{k}u_{k}X^{n-k} + \dots + (-1)^{n}u_{n}$$
(7.41)

Démonstration:

- Si $x_1, x_2, \dots x_n$ sont racines de P, alors $(x_1, x_2, \dots x_n)$ est solution de 7.40 d'après le point précédent.
- Si $(x_1, x_2, \dots x_n)$ est solution de 7.40, alors le polynôme $P = \prod_{i=1}^n (X x_i)$ s'écrit sous forme développée $X^n u_1 X^{n-1} + \dots + (-1)^n u_n$.

V Factorisation dans $\mathbb{C}[X]$ et $\mathbb{R}[X]$

$\underline{\mathbf{A}}$ Dans $\mathbb{C}[X]$

Théorème (de D'Alembert):

Tout polynôme de degré ≥ 1 à coefficients dans \mathbb{C} a au moins une racine. Par conséquent, les polynômes de $\mathbb{C}[X]$ de degré ≥ 1 sont tous scindés dans $\mathbb{C}[X]$

(démonstration par récurrence)

Théorème (Énoncé équivalent):

Les polynômes irréductibles unitaires de $\mathbb{C}[X]$ sont exactement les polynômes $X - \lambda, \lambda \in \mathbb{C}$.

Définition:

On dit que $\mathbb C$ est algébriquement clos.

B) Dans $\mathbb{R}[X]$

Soit $P \in \mathbb{R}[X]$. Soit $\lambda \in \mathbb{C}$, racine de multiplicité α . Alors $\bar{\lambda}$ est aussi racine de P, et avec la même multiplicité α .

Démonstration:

• Si λ est racine de P, où $P = \sum_{k=0}^{n} a_k X^k$, alors :

$$P(\lambda) = a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_0 \lambda^0 = 0$$
 (7.42)

Donc $\overline{P(\lambda)} = 0$, et:

$$\overline{P(\lambda)} = \overline{a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_0 \lambda^0}$$

$$= a_n \overline{\lambda}^n + a_{n-1} \overline{\lambda}^{n-1} + \dots + a_0 \overline{\lambda}^0$$

$$= P(\overline{\lambda})$$
(7.43)

Soit $P(\bar{\lambda}) = 0$. Donc $\bar{\lambda}$ est racine de P.

• Si λ est racine de multiplicité $\alpha \geq 1$ de P, alors : $P(\lambda) = P'(\lambda) = \ldots = P^{(\alpha-1)}(\lambda) = 0$, et $P^{(\alpha)}(\lambda) \neq 0$. Donc $P(\bar{\lambda}) = P'(\bar{\lambda}) = \ldots = P^{(\alpha-1)}(\bar{\lambda}) = 0$ (étape précédente appliquée aux $P^{(k)}$), et $P^{(\alpha)}(\bar{\lambda}) \neq 0$ car sinon $P^{(\alpha)}(\lambda) = P^{(\alpha)}(\bar{\lambda}) = 0$.

Soient $P \in \mathbb{R}[X]$ et λ une racine de P. Peut-on affirmer que $(X - \lambda)(X - \bar{\lambda})$ divise P?

C'est vrai uniquement si $\lambda \notin \mathbb{R}$, car sinon dans ce cas là $\lambda = \bar{\lambda}$ et donc on peut avoir $(X - \lambda)$ qui divise P mais pas forcément $(X - \lambda)^2$.

Théorème:

Les irréductibles de $\mathbb{R}[X]$ sont exactement les polynômes de degré 1 et de degré 2 sans racine réelle. Ainsi, tout polynôme P à coefficients réels de degré ≥ 1 s'écrit de manière unique $P = a \prod_{i=1}^{n} P_i$ où $a \in \mathbb{R}^*$ et où $P_i \in \mathbb{R}_2[X] \setminus \{P \in \mathbb{R}_2[X], \Delta(P) \geq 0\}$.

Démonstration:

- Déjà, si $P = aX + b \; ((a,b) \in \mathbb{R}^* \times \mathbb{R})$, alors P est irréductible. Si $P = aX^2 + bX + c$ avec $\begin{cases} & (a,b,c) \in \mathbb{R}^* \times \mathbb{R} \times \mathbb{R} \\ & b^2 4ac < 0 \end{cases}$, alors P est irréductible dans $\mathbb{R}[X]$ (sinon il s'écrirait $(\alpha X + \beta)(\alpha'.X + \beta')$ et aurait deux racines réelles).
- Soit maintenant P un polynôme de degré ≥ 2 . Selon le théorème de D'Alembert, il y a au moins une racine $\lambda \in \mathbb{C}$.
 - \diamond Si $\lambda \in \mathbb{R}$, alors $P = (X \lambda)Q$ où deg $Q = n 1 \ge 1$, donc P n'est pas irréductible.

 \diamond Si $\lambda \in \mathbb{C}\backslash \mathbb{R}$, alors $\bar{\lambda}$ est aussi racine de P, et $\bar{\lambda} \neq \lambda$ donc $(X - \lambda)(X - \bar{\lambda})$ divise P. Or, $(X - \lambda)(X - \bar{\lambda}) = X^2 - (\lambda + \bar{\lambda})X + \lambda\bar{\lambda} \in \mathbb{R}[X]$. Donc $P = (X^2 - sX + p)Q$ où $Q \in \mathbb{R}[X]$, $s \in \mathbb{R}$ et $p \in \mathbb{R}$. Donc deg Q = n - 2. Donc soit n = 2 et P est irréductible, soit $n \geqslant 3$ et P n'est pas irréductible.

Il n'y a donc pas d'autres polynômes irréductibles.

Plus précisément :

Soit $P \in \mathbb{R}[X]$, de degré $n \ge 1$ et de coefficient dominant a. Alors P admet n racines dans \mathbb{C} , regroupées ainsi :

- $\lambda_1, \lambda_2, \ldots \lambda_p$ racines réelles de multiplicités $\alpha_1, \alpha_2, \ldots \alpha_p$,
- $\mu_1, \bar{\mu}_1, \mu_2, \bar{\mu}_2, \dots \mu_p, \bar{\mu}_p$ racines complexes de multiplicités $\beta_1, \beta_1, \beta_2, \beta_2 \dots \beta_q, \beta_q$

avec $\sum_{i=1}^{p} \alpha_i + \sum_{i=1}^{q} \beta_i = n$. Alors :

$$P = a \prod_{i=1}^{p} (X - \lambda_i)^{\alpha_i} \prod_{i=1}^{q} (X - \mu_i)^{\beta_i} (X - \bar{\mu}_i)^{\beta_i}$$

$$= a \prod_{i=1}^{p} (X - \lambda_i)^{\alpha_i} \prod_{i=1}^{q} (X^2 - s_i X + p_i)^{\beta_i}$$
(7.44)

Οù

$$\forall i \in [1, q], s_i = \mu_i + \bar{\mu}_i = 2 \operatorname{Re}(\mu_i)$$

$$p_i = \mu_i \bar{\mu}_i = |\mu_i|^2$$
(7.45)

Définition (Algorithme de Horner):

Soit $P: x \mapsto \sum_{k=0} a_k x^k$. L'algorithme permet de calculer la valeur d'une fonction polynomiale en un point de \mathbb{K} avec un minimum d'opérations élémentaires :

$$((\dots((a_nx+a_{n-1})x+a_{n-2})x+\dots)x+a_1)x+a_0. (7.46)$$

On a ainsi au pire n multiplications et n additions.