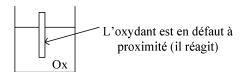


Chapitre 3 : Aspect cinétique de l'oxydoréduction

Introduction

• On note E^N le potentiel d'équilibre (potentiel de Nernst)


C'est le potentiel par rapport à l'électrode standard à hydrogène, et pour i = 0

- A l'équilibre, les réactions $Ox + ne^- \rightarrow Red$ et $Red \rightarrow Ox + ne^-$ se produisent toujours (équilibre dynamique)
- Si $i \neq 0$, $E \neq E^N$; il y a donc globalement soit une oxydation, soit une réduction (les deux processus ont lieux, mais l'un plus vite que l'autre)

I Cinétique à une électrode

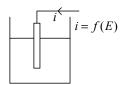
A) Facteurs limitant la vitesse d'une réaction électrochimique

1) Transfert de masse

Il faut attendre que l'oxydant arrive jusqu'à l'électrode; on a donc un phénomène de diffusion qui limite la réaction.

On a aussi un phénomène de migration dû au champ électrique, et qui peut être dans le « mauvais » sens.

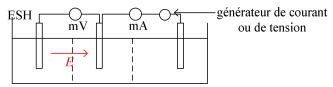
On peut enfin avoir aussi de la convection (agitation)


2) Transfert électronique

La réaction $Ox + ne^- = Red$ a une certaine vitesse de réaction, et limite donc aussi la vitesse.

On considère dans la suite que c'est uniquement ce facteur qui limite la réaction.

B) Montage à trois électrodes


1) But

On souhaite déterminer le courant en fonction de E.

Il faut une électrode de référence à l'équilibre (au potentiel de Nernst), et non parcourue par un courant, pour déterminer le potentiel.

2) Réalisation

(Il faut une résistance très importante pour le millivoltmètre) La troisième électrode s'appelle une « contre-électrode »

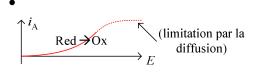
C) Courbe anodique et cathodique

Pour i = 0, on a $E = E^N$

Sinon, i résulte de deux processus antagonistes :

- Une réduction (processus cathodique). On a $i_C < 0$
- Une oxydation (processus anodique). On a $i_A > 0$

Ainsi, l'intensité correspond à la résultante $i_A + i_C$ des deux processus.

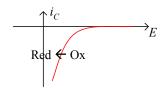

On étudie séparément les deux processus :

1) Caractéristique anodique (courant d'oxydation)

On ne peut pas avoir i < 0, puisque alors les électrons arrivent sur l'électrode.

• Comme il n'y a pas d'oxydant, on a $i_C = 0$. On trace $i_A(E)$:

Remarque:

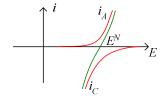

La courbe dépend de la cinétique de la réaction, et de toutes les espèces mises en jeu : l'oxydant, le réducteur et la nature de l'électrode (à cause des électrons)

i dépend aussi de la surface de l'électrode. Il faudrait donc normalement tracer $j_A(E)$ (courant surfacique)

2) Caractéristique cathodique (courant de réduction)

On a $i = i_A + i_C$, et $i_A = 0$. Donc $i = i_C < 0$.

D) Systèmes rapides, systèmes lents

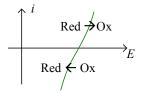


On a $i = i_A + i_C \lessgtr 0$

On admet (postulat) que les deux phénomènes d'oxydation et de réduction peuvent se superposer, c'est-à-dire que la courbe est la somme des deux courbes tracées précédemment

1) Systèmes rapides

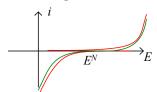
C'est lorsque les deux courbes sont peu décalées l'une par rapport à l'autre :


• A l'équilibre, i = 0 donc $E = E^N$, et $i_A = -i_C$

Les deux réactions antagonistes se font avec une grande vitesse.

• Hors équilibre :

Si $E > E^N$, il y a une oxydation


Si $E < E^N$, il y a une réduction

• Exemple : Fe³⁺ / Fe²⁺ sur une électrode de platine est un système rapide.

2) Systèmes lents

C'est lorsque les deux courbes sont très décalées :

• A l'équilibre :

On a i = 0, $E = E^N$

Mais on ne peut pas mesurer E^N , puisqu'il y a de grands écarts même quand i est très faible.

Les deux processus sont lents

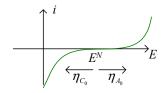
• Hors équilibre :

Pour avoir i > 0, il faut que E soit largement supérieur à E^N

Pour avoir i < 0, il faut que E soit largement inférieur à E^N

Exemple:

Pour H⁺/H₂, le système est rapide sur une électrode de platine et lent sur le mercure


Un système lent correspond à une irréversibilité (il faut se placer largement hors équilibre)

E) Surtension à une électrode

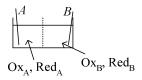
1) Définition

On pose $\eta = E - E^N$

2) Système lent

On a $\eta_{C_0} < 0$, $\eta_{A_0} > 0$

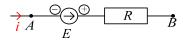
- Lorsque i > 0, on a $\eta > \eta_{A_0}$
- Lorsque i < 0, on a $\eta < \eta_{C_0}$
- Si $\eta_{C_0} < \eta < \eta_{A_0}$, on a i = 0


3) Système rapide

On a alors $\eta_{C_0} = \eta_{A_0} = 0$

- Si $\eta > 0$, i > 0
- Si $\eta < 0$, i < 0

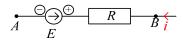
II Piles et électrolyseurs


A) Principe

Pour la réaction $Ox_B + Red_A = Ox_A + Red_B$, on a $\Delta_r G = -(E_B^N - E_A^N) \times n$ On suppose $E_B^N > E_A^N$

1) Fonctionnement en pile

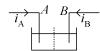
• On a la réaction $Ox_B + Red_A \rightarrow Red_B + Ox_A$



On a alors $i_{AB} > 0$

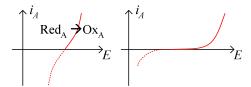
- En B: on a la réaction $Ox_B \rightarrow Red_B$ (cathode, borne +)
- En A: on a la réaction $\operatorname{Red}_A \to \operatorname{Ox}_A$ (anode, borne –)
- La pile fournit de l'énergie.

2) Fonctionnement en électrolyseur

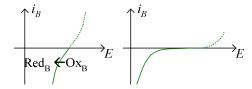

• On a la réaction $Ox_B + Red_A \leftarrow Red_B + Ox_A$, et $i_{AB} < 0$

- En $B : \text{Red}_B \to \text{Ox}_B$, on est donc à l'anode (toujours la borne +)
- En $A : Ox_A \rightarrow Red_A$, on est donc à la cathode (borne –)
- Il faut fournir de l'énergie.

B) Piles


1) Intensité

On aura pour un fonctionnement en pile, $i_A > 0$, $i_B < 0$ et $i_A = -i_B = i$


2) Caractéristique anodique et cathodique

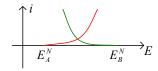
• Anode A:

(A est parcourue par un courant positif)

• Cathode *B* :

3) Point de fonctionnement

• Pour des systèmes A, B rapides (diagramme d'Evans) :


$$\begin{array}{c|c}
i & E_B - E_A = \Delta E_B \\
E_A & E_B^N & E_B
\end{array}$$

- ΔE dépend de *i*.
- i_{cc} : courant de court circuit. Si $i > i_{cc}$, la pile reçoit de l'énergie
- Cas idéal :

On obtiendrait une pile dont la fem ne dépend pas de i.

• Pour des systèmes A, B lents :

La pile ne débite pas facilement.

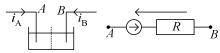
4) Chute ohmique

$$\stackrel{\bullet}{A}$$
 $\stackrel{\bullet}{\Rightarrow}$ $\stackrel{R}{\Rightarrow}$ $\stackrel{\bullet}{B}$

On a $Ri_{AB} = e_{AB} + u_{AB}$

$$Donc -u_{AB} = e_{AB} - Ri_{AB}$$

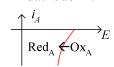
Soit
$$V_B - V_A = \Delta E - Ri$$

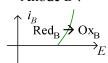

Il faut donc une résistance la plus petite possible, c'est-à-dire une solution très concentrée.

Remarque:

Les piles fonctionnant sur un système rapide peuvent fonctionner réversiblement.

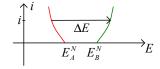
C) Electrolyseur


1) Intensité


On a ici $i_A < 0$, $i_B > 0$, $i_B = -i_A = i$

2) Caractéristiques

• Cathode *A*:



• Anode B:

3) Point de fonctionnement

• Systèmes rapides :

- Si $\Delta E < E_B^N E_A^N$, il n'y a pas d'intensité dans l'électrolyseur
- On peut électrolyser réversiblement.

• Systèmes lents :

$$\begin{array}{c|c}
 & \downarrow E_A^0 & \downarrow E_B^0 \\
\hline
E_A^N & E_B^N & \uparrow E_B^N \\
\hline
\eta_{c,0} & \eta_{a,0}
\end{array}$$

$$(\eta_a > 0, \eta_c < 0)$$

Il faut $\Delta E > E_B^N - E_A^N + \eta_{a,0} - \eta_{c,0}$ pour pouvoir électrolyser.

4) Cas où plusieurs oxydations/réductions sont possibles

Exemple:

Electrolyse du chlorure de sodium aqueux

Réduction cathodique :

On a une compétition à la cathode :

$$Na^{+} + e^{-} = Na$$
, $H_{2}O + e^{-} = \frac{1}{2}H_{2} + OH^{-}$

- Cathode en fer à pH = 14:

$$E_{\text{Na}}^{N} = -2.7 \text{V}, \ E_{\text{H}_2\text{O/H}_2}^{N} = -0.84 \text{V}$$

Thermodynamiquement, c'est H₂O qui va être réduit (c'est un meilleur oxydant)

$$\begin{array}{ccc}
\uparrow & i & -2.7 & -0.84 \\
Na & & H_2 & H_2O
\end{array}$$

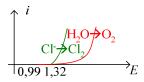
- Cathode de mercure à pH = 4:

 $E_{\rm Na}^{\it N}=-1{,}76{\rm V}$ (Le sodium réagit un peu avec le mercure, d'où le potentiel différent)

$$E_{\rm H_2O/H_2}^N = -0.24 \text{V}$$

Thermodynamiquement, c'est H₂O qui va être préférentiellement réduit.

$$\begin{array}{c}
\uparrow i \\
-1,76 -0,24 \\
Na \not\leftarrow Na^+ \\
H_2 \not\leftarrow H_2O
\end{array}$$


Cinétiquement, on aura ici l'électrolyse du sodium.

• Oxydation anodique:

On a compétition entre
$$Cl^- \rightarrow \frac{1}{2}Cl_2 + e^-$$
 et $H_2O \rightarrow \frac{1}{2}O_2 + 2H^+ + 2e^-$

On a
$$E_{\text{Cl}_2/\text{Cl}^-}^N = 1,32\text{V}$$
, $E_{\text{O}_2/\text{H}_2\text{O}}^N = 0,99\text{V}$

Thermodynamiquement, c'est donc l'eau qui sera plutôt oxydée.

(Sur une électrode graphite)

On aura donc cinétiquement l'oxydation du Cl-.

5) Chute ohmique

On a
$$Ri_{AB} = u_{AB} + e_{AB}$$

Donc $V_B - V_A = E_B - E_A - Ri_{AB} = E_B - E_A + Ri$

Lorsqu'on veut électrolyser, il faut donc une tension supérieure à $E_{\scriptscriptstyle B}-E_{\scriptscriptstyle A}$ car la résistance interne va consommer une partie de l'énergie.