

Chapitre 7 : Distribution de charges et de courants

I Distribution volumique, surfacique, linéique

A) Densité volumique

On considère un volume élémentaire $d\tau$.

1) Densité volumique de charge

$$dq = \overline{\sum_{i \in d\tau} q_i}.$$
Donc $\rho = \frac{dq}{d\tau} = \rho(\vec{r}, t)$

2) Densité surfacique de courant volumique

• On prend une surface élémentaire orientée $d\vec{S}$:

$$\bigcirc$$
 $d\vec{S}$

La charge qui traverse $d\vec{S}$ pendant dt est $\delta^2 q = \vec{j} \cdot d\vec{S} \cdot dt$ (définition de \vec{j})

Et
$$\frac{\delta^2 q}{dt} = \vec{j} \cdot d\vec{S} = dI$$

- On a déjà montré que $\vec{j}d\tau = \sum_{i \in d\tau} q_i \vec{v}_i$.
- Cas particuliers:
- Pour des porteurs identiques, $q_i = q$:

$$\sum_{i \in d\tau} q_i \vec{v}_i = q \sum_{i \in d\tau} \vec{v}_i = q \vec{v}.nd\tau$$

(*n* : nombre de porteurs par unité de volume, \vec{v} : vitesse moyenne)

Donc $\vec{j} = qn\vec{v}$ ou, avec $qn = \rho_m$ (densité volumique de charges mobiles):

$$\vec{j} = \rho_{\scriptscriptstyle m} \vec{v}$$

- Pour des porteurs différents :

$$\vec{j} = \sum_{k} \rho_{v}^{(k)} \vec{v}^{(k)}$$

3) Densité volumique de force de Lorentz

On a, dans le volume $d\tau$, pour chaque particule, $\vec{F}_i = q_i(\vec{E} + \vec{v}_i \wedge \vec{B})$

 $(\vec{E}, \vec{B}: \text{valeur moyenne des champs dans le volume})$

Donc
$$\sum \vec{F}_i = \sum q_i \vec{E} + \sum q \vec{v}_i \wedge \vec{B}$$

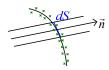
Soit
$$d\vec{F} = \rho . d\tau . \vec{E} + \vec{j} d\tau \wedge \vec{B}$$

On a donc une densité volumique de force de Lorentz

$$\vec{f} = \frac{d\vec{F}}{d\tau} = \rho . \vec{E} + \vec{j} \wedge \vec{B}$$

B) Distributions surfaciques

1) Densité surfacique de charge



$$dq = \int_{-\infty}^{+\infty} \rho d\tau = \int_{-\infty}^{+\infty} \rho . dS . dn = \left(\int_{-\infty}^{+\infty} \rho dn\right) dS$$

On pose
$$\sigma = \int_{-\infty}^{+\infty} \rho dn \sim \rho.e$$
. Ainsi, $dq = \sigma dS = \overline{\sum_{i \in dS} q_i}$

2) Densité linéique de courant surfacique

On a $\delta^2 q = \vec{j}_s \cdot \vec{u} dl. dt$.

Et
$$\frac{\delta^2 q}{dt} = \vec{j}_S \cdot \vec{u} dl = dI$$

On aura ici $\sum q_i \vec{v}_i = \vec{j}_s dS$ (dS: élément de surface sur Σ)

Et
$$\vec{j}_s = \int_{-\infty}^{+\infty} \vec{j} dn \sim e.\vec{j}$$

C) Distribution linéique

$$\frac{S \left(\begin{array}{c} \left(\begin{array}{c} \left(\left(\frac{1}{N} \right) \times \left(\frac{1}{N} \times \frac{$$

1) Densité linéique de charge

On pose
$$dq = \sum_{i \in d\bar{l}} q_i = \lambda.dl$$

2) Densité de courant linéique = courant

On pose dq = Idt:

Donc
$$\iint \vec{j} \cdot d\vec{S} = I$$

Et
$$\sum_{i \in d\vec{l}} q_i \vec{v}_i = \vec{j} d\tau = \iint \vec{j} (d\vec{s} \cdot \underline{dl} \cdot \underline{\vec{u}}) = (\iint \vec{j} \cdot d\vec{s}) d\vec{l} = Id\vec{l}$$

 $(\vec{j}, d\vec{l}, d\vec{s} \text{ sont colinéaires})$

Récapitulatif:

Charge élémentaire : $dq = \sum q_i = \rho d\tau = \sigma dS = \lambda dl$

Elément de courant : $\sum q_i \vec{v}_i = \vec{j} d\tau = \vec{j}_s dS = Id\vec{l}$

Intensité élémentaire : $dI = \vec{j} \cdot d\vec{S} = \vec{j}_S \cdot \vec{u}dl = I$

D) Ordres de grandeur

1) Densité de charges mobiles

Ainsi, on a une densité volumique de porteurs $n \sim 10^{30} \,\mathrm{m}^{-3}$

Donc
$$\rho_m = -ne \sim -10^{11} \text{C.m}^{-3}$$

Comparaison:

Pour un volume $v = 1 \text{cm}^3$ (1mL) de cuivre :

Si on veut retirer tous les électrons de conduction (libres) et les mettre 10cm plus loin : la charge restante est $q = 10^{11} \times 10^{-6} = 10^{5}$ C

Donc la force s'exerçant entre les deux parties a un module :

$$F = \frac{qq'}{4\pi\varepsilon_0 r^2} \sim 10^{10}.9.10^9 \times 100 \sim 10^{22} \,\text{N}$$

Par comparaison, le Soleil exerce sur la Terre une force de module $F = 3.5.10^{22} \,\mathrm{N}$!

Et le travail à fournir pour amener ces charges est de $W = \left| \frac{qq'}{4\pi\varepsilon_0 r} \right| = 10^{21} \text{J}$

2) Vitesse des porteurs

• Vitesse thermique:

On utilise le modèle de Drude : les électrons dans un conducteur sont comme des particules d'un gaz parfait.

Ainsi,
$$\frac{1}{2}m < v_i^2 >= \frac{3}{2}k_BT$$

Et $v_{th} = \sqrt{\langle v_i^2 \rangle} = \sqrt{\frac{3k_BT}{m}} \sim 10^5 \text{m.s}^{-1}$

• Vitesse de dérive :

C'est $\langle \vec{v}_i \rangle$ quand le conducteur est parcouru par un courant (s'il n'y a pas de courant, $\langle \vec{v}_i \rangle = \vec{0}$)

Pour un fil de section $s \sim 1 \text{mm}^2$, parcouru par un courant I = 1 A, on a $j = \rho_m v_d$, soit $v_d = \frac{I}{\rho_m s} = \frac{1}{10^{10} 10^{-5}} = 10^{-5} \text{m.s}^{-1}$

Ainsi, les électrons ont une vitesse d'agitation très importante, mais globalement, même traversés par un courant assez important, ils ont une vitesse moyenne très faible.

II Postulat de la charge

A) Conservation

1) Expression globale

Pour une surface fermée fixe dans un référentiel quelconque, on a $dq = d_e q$

Soit
$$\frac{dq}{dt} = \frac{d_e q}{dt}$$
, donc $\frac{d}{dt} \iiint \rho d\tau = - \oiint \vec{j} \cdot d\vec{S}$

2) Expression locale

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \vec{j} = 0$$

Remarque:

- En régime permanent $(\frac{\partial \rho}{\partial t} = 0), \vec{\nabla} \cdot \vec{j} = 0$
- Ce postulat est aussi valable en relativité.

B) Invariance

1) Postulat

La charge est invariante par changement de référentiel.

2) Transformation galiléenne des charges et des courants

Dans un référentiel R à l'instant t:

On considère des charges dans un volume $d\tau$

• Dans R,

 $\sum_{i \in d\tau} q_i \vec{v}_i = \vec{j} d\tau, \text{ soit } \vec{j} = \frac{\sum_{i \in d\tau} q_i \vec{v}_i}{d\tau}$

• Dans un référentiel R' en translation à la vitesse \vec{V} par rapport à R: On cherche ρ' , \vec{j}' .

On a par invariance dq = dq', et $d\tau = d\tau'$. Donc $\rho' = \rho$

On a de plus
$$\vec{j}' = \frac{\sum_{i \in d\tau} q'_i \vec{v}'_i}{d\tau'} = \frac{\sum_{i \in d\tau} q_i \vec{v}'_i}{d\tau}$$
; et, avec $\vec{v}'_i = \vec{v}_i - \vec{V}$:

$$\vec{j}' = \vec{j} - \rho \vec{V}$$

Remarque:

Ces formules ne sont pas valables en relativité :

- La formule de composition des vitesses n'est pas valide
- Et la longueur, donc le volume, n'est pas invariante par changement de référentiel.

III Loi d'Ohm locale

A) Loi d'Ohm en régime permanent

1) Expression

Un champ électrique \vec{E} provoque un courant \vec{j} . Si $|\vec{j} = \sigma \cdot \vec{E}|$, on dit que la loi d'Ohm est vérifiée dans le matériau.

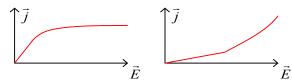
 σ s'appelle alors la conductivité électrique du milieu.

2) Discussion

- C'est une loi phénoménologique (correspond à un DL au premier ordre), et macroscopique.
- Elle est analogue à la loi de Fourier $\vec{j} = -\lambda . \vec{\nabla} T$
- Elle traduit un phénomène irréversible

- La loi est valable uniquement dans un matériau isotrope
- Domaines de validité :
- Dans les métaux et les solutions ioniques, la loi est généralement très bien vérifiée.
- Pour les mauvais conducteurs ou les gaz, les résultats sont moins bons :

On peut avoir un « plat », ou des termes d'ordre 2 qui apparaissent rapidement :



(Dans le deuxième cas, on a un claquage diélectrique : les électrons sont arrachés)

- On a réussi à créer des matériaux pour lesquels $\vec{j} \propto E^5$
- C'est une loi locale.

La loi globale correspondante est u = Ri.

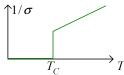
En effet:

$$\delta S \stackrel{d\vec{l}}{\longleftrightarrow} \delta I$$

On a $\delta I = \vec{j} \cdot \delta \vec{S}$, $dU = \vec{E} \cdot d\vec{l}$

Comme
$$\vec{j} = \sigma . \vec{E}$$
, on a $dU = \vec{E} \cdot d\vec{l} = \frac{\vec{j} \cdot d\vec{l}}{\sigma} = \frac{\vec{j} \cdot \delta \vec{S}}{\sigma} \frac{dl}{\delta S} = \delta l \underbrace{\left(\frac{1}{\sigma} \frac{dl}{\delta S}\right)}_{R}$

- σ dépend de la température :
- Pour les métaux, $\frac{d\sigma}{dT}$ < 0 (les métaux sont moins bons conducteurs à haute température).
- Pour une solution ionique, $\frac{d\sigma}{dT} > 0$
- Supraconducteurs:



(En dessous d'un certain seuil, la résistivité devient indétectable)

- Pour appliquer la loi d'Ohm, la seule force motrice doit être \vec{E} :
- Il ne doit pas y avoir de champ magnétique, ou il faut pouvoir le négliger.
- Lorsqu'on a un gradient de température, la loi s'écrit sous la forme $\vec{j} = \sigma(\vec{E} s\vec{\nabla}T)$
- Ordres de grandeur :

Pour l'argent, $\sigma = 6.2.10^7 \text{ S.m}^{-1}$

Pour le soufre, $\sigma = 5.0.10^{-22} \text{ S.m}^{-1}$

La conductivité varie sur un très grand domaine.

3) Interprétation

• Modèle macroscopique :

On va essayer de retrouver la loi d'Ohm:

Pour une particule chargée moyenne de charge q, au nombre de n par unité de volume, et de vitesse \vec{v} , on a :

$$\vec{j} = \rho_m \vec{v} = q n \vec{v}$$

Le principe fondamental de la dynamique s'écrit :

$$m\frac{d\vec{v}}{dt} = q\vec{E}$$
; on voit déjà que cette formule ne conviendra pas, car on

trouvera au mieux une relation entre \vec{E} et $\frac{d\vec{j}}{dt}$

Hypothèse ad hoc (« on ajoute ce qu'il faut pour que ça marche ») :

On suppose que la particule est soumise en plus à une force de frottement visqueux $-f\vec{v}$.

Ainsi, l'équation devient :

$$m\frac{d\vec{v}}{dt} = q\vec{E} - f\vec{v}$$

En régime permanent :

On a
$$\frac{\partial}{\partial t} = 0$$

Attention, on ne peut pas écrire pour autant $\frac{d}{dt} = 0$!

Visualisation, avec un fleuve:

En régime permanent, on aura en un point particulier du fleuve $\frac{\partial \vec{v}}{\partial t} = \vec{0}$

Mais si on suit une particule le long de son parcours, $\frac{d\vec{v}}{dt} \neq \vec{0}$!

 $\frac{\partial \vec{v}}{\partial t}$ correspond en fait à une dérivée locale.

Calcul de
$$\frac{d\vec{v}}{dt}$$
:

Plus généralement pour une fonction $f(\vec{r},t) = f(x,y,z,t)$.

Pour une petite variation de x, y, z, t:

$$df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz + \frac{\partial f}{\partial t} dt$$

Soit
$$\frac{df}{dt} = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt} + \frac{\partial f}{\partial z} \frac{dz}{dt} = \frac{\partial f}{\partial t} + (\vec{\nabla}f) \cdot \vec{v} = \frac{\partial f}{\partial t} + \vec{v} \cdot \vec{\nabla}f$$

Le terme $\frac{\partial f}{\partial t}$ correspond à une dérivée locale, $\vec{v}\cdot\vec{\nabla}f$ à une dérivée convective.

Pour \vec{v} dans ce cas, on aura :

$$\frac{d\vec{v}}{dt} = \frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \vec{\nabla} \vec{v} = \vec{v} \cdot \vec{\nabla} \vec{v}$$

On va supposer que $\vec{v} \cdot \vec{\nabla} \vec{v}$ est négligeable devant $q\vec{E}$ et $-f\vec{v}$.

Alors
$$\vec{v} = \frac{q}{f}\vec{E}$$

Conductivité:

On a ainsi
$$\vec{j} = nq\vec{v} = \frac{nq^2}{f}\vec{E}$$

Donc
$$\sigma = \frac{nq^2}{f}$$

- Modèle microscopique :
- Modèle:

On prend cette fois les porteurs individuellement, de charge $q_i = q$, de vitesse \vec{v}_i , soumis à deux forces :

$$\vec{F} = q_i \vec{E} = q \vec{E}$$

Interactions avec les autres particules du milieu, par des chocs :

On suppose que \vec{v}'_0 est totalement indépendant de \vec{v}_0 (la particule « oublie » sa vitesse d'avant)

Cela revient à supposer que lorsqu'on voit une particule avec une certaine vitesse après un choc, on ne peut pas déterminer quelle avait été sa vitesse avant, ce qui est assez naturel.

- On a
$$\vec{j}d\tau = \sum_{i \in d\tau} q_i \vec{v}_i$$

Donc
$$\vec{j} = \frac{1}{d\tau} q \sum_{\substack{i \in d\tau \\ \leq \vec{v} > nd\tau}} \vec{v}_i = nq < \vec{v}_i >$$

- Expression de $\langle \vec{v}_i \rangle$:

$$\vec{v}_i = \vec{v}_{i_0} + \frac{q}{m}\vec{E}.(t - t_{0_i})$$
 (\vec{v}_{i_0} : vitesse à la sortie du dernier choc)

Donc
$$\langle \vec{v}_i \rangle = \langle \vec{v}_{i_0} \rangle + \frac{q}{m} \vec{E}. \langle t - t_{0_i} \rangle$$

D'après l'hypothèse faite, $\langle \vec{v}_{i_0} \rangle = \vec{0}$ car les particules peuvent repartir dans n'importe quelle direction, avec n'importe quel module.

Donc $\langle \vec{v}_i \rangle = \frac{q}{m} \vec{E} \cdot \tau$ (τ : temps de parcours moyen entre deux chocs)

- Ainsi,
$$\vec{j} = nq < \vec{v}_i > = \frac{nq^2\tau}{m}\vec{E}$$

C'est-à-dire
$$\sigma = \frac{nq^2\tau}{m}$$
.

Discussion

- On a
$$\sigma = \frac{nq^2}{f} = \frac{nq^2\tau}{m}$$
, donc $f = \frac{m}{\tau}$

C'est-à-dire
$$\vec{F}_f = \frac{-m}{\tau} \vec{v}$$

Ainsi, les chocs se traduisent en moyenne par un frottement visqueux.

Pour un métal (cuivre):

On a
$$n \sim 10^{30} \,\mathrm{m}^{-3}$$
, $q = 1.9.10^{-19} \,\mathrm{C}$, $m = 9.10^{-31} \,\mathrm{kg}$

 $\tau \sim \frac{d}{v_t}$ où d est la distance entre deux ions, et v_{th} la vitesse thermique des

porteurs. Ainsi, avec $d \sim 10^{-10} \,\mathrm{m}$, $v_{th} \sim 10^5 \,\mathrm{m.s^{-1}}$, on a $\tau \sim 10^{-15} \,\mathrm{s}$.

D'où
$$\sigma \sim 3.10^7 \text{S.m}^{-1}$$

- Si on avait en plus un champ magnétique, le principe s'écrirait :

$$m\vec{a} = q\vec{E} - \frac{m}{\tau}\vec{v} + q\vec{v} \wedge \vec{B}$$

Si on ne peut pas négliger $q\vec{v} \wedge \vec{B}$, la loi ne s'applique plus.

En réalité, une théorie plus complète montre que la conductivité est due à des interactions des électrons avec les défauts du réseau.

B) Loi d'Ohm en régime variable

On suppose que $\vec{E}(\vec{r},t) = \vec{E}(\vec{r}).e^{-i\omega t}$

(On peut ensuite généraliser à un régime variable quelconque avec les transformées de Fourier)

1) Conductivité complexe

On a
$$m\frac{d\vec{v}}{dt} = q\vec{E} - \frac{m}{\tau}\vec{v}$$

Ou
$$m \frac{\partial \vec{v}}{\partial t} = q\vec{E} - \frac{m}{\tau}\vec{v}$$

(On admet que les termes supplémentaires sont effectivement négligeables) On cherche donc des solutions sous la forme $\vec{v} = \vec{v}(\vec{r})e^{-i\omega t}$

Dans l'équation,
$$-i\omega \cdot \vec{v} = \frac{q}{m} \cdot \vec{E} - \frac{1}{\tau} \vec{v}$$

Ou
$$\vec{v} = \frac{q\tau}{m} \frac{1}{1 - i\omega\tau} \vec{E}$$

Donc
$$\vec{j} = nq\vec{v} = \frac{nq^2\tau}{m} \frac{1}{1 - i\omega\tau} \vec{E}$$

Donc
$$\vec{j} = nq\vec{v} = \frac{nq^2\tau}{m} \frac{1}{1 - i\omega\tau} \vec{E}$$

C'est-à-dire $\sigma = \frac{nq^2\tau}{m} \frac{1}{1 - i\omega\tau} = \frac{\sigma_0}{1 - i\omega.\tau}$
Où σ_0 est la conductivité en régime permanent.

Ainsi, on aura une différence de phase du courant sur le champ

Remarque:

On n'utilise les _ que pour indiquer une transformée de Fourier ; ici, σ est simplement un coefficient, qui se trouve être complexe.

2) Cas limites

• Lorsque
$$\omega.\tau << 1$$
, ou $\tau << \frac{1}{\omega}$

On a alors $\sigma \approx \sigma_0$

• Lorsque $\omega \tau >> 1$,

On a
$$\sigma = i \frac{nq^2}{m\omega} \in i\mathbb{R}$$

Donc
$$\langle \vec{j} \cdot \vec{E} \rangle = \frac{1}{2} \operatorname{Re} \left(\underline{\vec{j}} \cdot \underline{\vec{E}} * \right) = 0$$

On verra que $<\vec{j}\cdot\vec{E}>$ correspond à la puissance volumique dissipée par effet Joule.

• Ordres de grandeur :

On doit avoir $\omega \sim \frac{1}{\tau} \sim 10^{15} \,\mathrm{s}^{-1}$ pour que les effets se fassent sentir, c'est-à-dire

une fréquence
$$v = \frac{\omega}{2\pi} \sim 10^{14} \,\text{Hz}$$

IV Complément

A) Densité de charge dans un conducteur ohmique

On note ρ la densité de charge *totale* du conducteur (mobiles et fixes), et on suppose qu'on a un conducteur ohmique, c'est-à-dire que $\vec{j} = \sigma \underline{\vec{E}}$.

On suppose enfin que σ est indépendant du point.

1) Conducteur à l'équilibre

A l'équilibre,

$$\vec{j} = \vec{0} \vec{j} = \sigma \vec{E} donc \vec{E} = \vec{0}$$

Comme
$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$
, on a même $\rho = 0$.

2) Conducteur en régime permanent

On aura
$$\frac{\partial \rho}{\partial t} = 0$$

Mais
$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \vec{j} = 0$$
 (conservation de la charge)

Donc
$$\vec{\nabla} \cdot \vec{j} = 0$$

 $\vec{j} = \sigma \vec{E}$, soit $\vec{\nabla} \cdot \vec{E} = 0$, donc $\rho = 0$.

3) Conducteur en régime variable

• Ici, \vec{E} , \vec{i} , ρ dépendent du temps.

Transformée de Fourier $(\vec{r},t) \rightarrow (\vec{k},\omega)$

• On a
$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \vec{j} = 0$$
, soit $-i\omega \rho + i\vec{k} \cdot \vec{j} = 0$

Et
$$\underline{\vec{j}} = \sigma \underline{\vec{E}}$$
 où $\sigma = \frac{\sigma_0}{1 - i\omega\tau}$

Et
$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0 \varepsilon_r}$$
 soit $i\vec{k} \cdot \underline{\vec{E}} = \frac{\rho}{\varepsilon_0 \varepsilon_r}$

(On considère pour simplifier que $\varepsilon_r = 1$)

On obtient alors, après calcul, l'équation :

$$\underline{\rho}\left(-\omega^2 - i\omega\frac{1}{\tau} + \frac{1}{\tau\tau_r}\right) = 0, \text{ où } \tau_r = \frac{\varepsilon_0}{\sigma_0}$$

Ordres de grandeur :

Pour un bon conducteur, $\tau = 10^{-15}$ s

Et
$$\tau_{r} \sim 10^{-18} \, \text{s}$$

On a $\tau \tau_r = \frac{m\sigma_0}{nq^2} \times \frac{\varepsilon_0}{\sigma_0} = \frac{m\varepsilon_0}{nq^2}$, du même ordre de grandeur pour tous les

conducteurs (à porteurs identiques, $\frac{m\varepsilon_0}{q^2}$ est constant)

• En régime quelconque :

L'équation devient :

$$\frac{\partial^2 \rho}{\partial t^2} + \frac{1}{\tau} \frac{\partial \rho}{\partial t} + \frac{1}{\tau \tau_r} \rho = 0$$

Equation caractéristique :

$$\lambda^2 + \frac{1}{\tau}\lambda + \frac{1}{\tau\tau_r} = 0$$
, $\Delta = \frac{1}{\tau^2} - \frac{4}{\tau\tau_r}$

Pour un bon conducteur, $\tau >> \tau_r$, donc $\Delta \sim \frac{-4}{\tau \tau_r}$

Et
$$\rho = \rho_0 e^{\frac{-t}{2\tau}} \cos \left(\frac{t}{\sqrt{\tau \tau_r}} + \varphi \right)$$
 (L'autre terme est divergent)

Dans un mauvais conducteur, $\tau << \tau_r$, et $\sqrt{\Delta} \sim \frac{1}{\tau} \left(1 - \frac{2\tau}{\tau_r} \right)$

Donc $\rho = Ae^{-t/\tau} + Be^{-t/\tau_r}$, et l'ensemble est amorti avec une constante de temps τ_r .

Dans les deux cas, le système est amorti avec la constante de temps la plus grande entre τ_r et τ .

• Régime sinusoïdal :

On cherche
$$\underline{\rho}\left(-\omega^2 - i\omega\frac{1}{\tau} + \frac{1}{\tau\tau_r}\right) = 0$$

Donc soit $\rho = 0$,

Soit
$$-\omega^2 - i\omega \frac{1}{\tau} + \frac{1}{\tau \tau_r} = 0$$

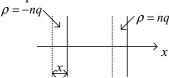
Pulsation plasma:

- (1) Il faut que la partie imaginaire soit nulle ou négligeable, c'est-à-dire $\frac{\omega}{\tau} << \omega^2$, ou $\omega >> \frac{1}{\tau}$
- (2) Pour la partie réelle : on doit avoir $\omega^2 = \frac{1}{\tau \tau_r}$, c'est-à-dire

$$\omega = \sqrt{\frac{nq^2}{m\varepsilon_0}} = \omega_p$$
, pulsation plasma.

Et on peut avoir alors $\rho \neq 0$ en régime permanent.

Interprétation:



Bloc de porteurs

Le bloc de porteurs se déplace « en bloc » d'une petite distance x.

Ainsi, il n'y a plus de porteurs à gauche.

On laisse alors le système évoluer :

Entre les deux couches, on a un champ
$$\vec{E} = \frac{-nqx}{\varepsilon_0} \vec{u}_x$$

Donc le champ tend à le faire revenir vers leur position initiale.

On a alors un oscillateur harmonique:

Principe fondamental de la dynamique appliqué à un porteur moyen :

$$m\ddot{x} = q \left(\frac{-nq}{\varepsilon_0} x \right)$$

Soit
$$\ddot{x} + \frac{nq^2}{m\varepsilon_0}x = 0$$

Et on a donc une pulsation
$$\omega = \sqrt{\frac{nq^2}{m\varepsilon_0}} = \omega_p$$

Ainsi, ω_p est la pulsation propre du système de charges.