

Chapitre 18 : Equations différentielles linéaires

Rappel:

Intégration des fonctions continues (par morceaux) à valeur dans un espace de Banach (surtout pour un espace normé de dimension finie)

Exemple:

Pour $t \in [0;1]$, on pose $f_t(x) = e^{t \cdot x}$

On définit ainsi
$$\varphi: [0;1] \to (C^0([0;1], \mathbb{R}), \| \|_{\infty})$$

 $t \mapsto f$

On veut montrer que φ est continue, et calculer $\int_0^1 \varphi(t)dt$.

On a pour tous $t, u \in [0;1]$:

$$\|\varphi(t) - \varphi(u)\|_{\infty} = \sup_{[0:1]} \left| e^{t.x} - e^{u.x} \right| \le e^{|t|} \sup_{[0:1]} \left| e^{(u-t).x} - 1 \right| \le e^{t} \left| e^{u-t} - 1 \right| = \left| e^{t} - e^{u} \right|$$

Donc pour tout $t_0 \in [0;1]$, on a $\lim_{u \to t_0} \| \varphi(t_0) - \varphi(u) \|_{\infty} = 0$ donc φ est continue en t_0 et donc sur [0;1].

La théorie de l'intégration des fonctions continues par morceaux à valeurs dans un Banach montre que $\int_0^1 \varphi(t)dt = g \in C^0([0;1],\mathbb{R})$.

Calcul de g(x) pour $x \in [0;1]$:

Soit
$$\lambda_x : f \in C^0([0;1], \mathbb{R}) \mapsto f(x) \in \mathbb{R}$$

Alors λ_x est linéaire, continue pour $\| \cdot \|_{\infty}$.

Donc
$$\lambda_x(g) = g(x) = \lambda_x \left(\int_0^1 f_t dt \right) = \int_0^1 \lambda_x(f_t) dt$$

(C'est évident pour des fonctions en escalier, puis vrai sur $C^0([0;1],\mathbb{R})$ par densité et continuité)

Donc
$$g(x) = \lambda_x(g) = \int_0^1 e^{tx} dt = \begin{cases} 1 \text{ si } x = 0 \\ \frac{e^x - 1}{x} \text{ si } x \neq 0 \end{cases}$$

Cas particulier où le but E est de dimension finie : si on note $(\vec{e}_1,...\vec{e}_n)$ une base de E, alors

$$f:[a,b] \to E$$
 se décompose en $f(t) = \sum_{k=1}^{n} f_k(t)\vec{e}_k$ où $f_k:[a,b] \to \mathbb{K}$ ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C})

Alors f est continue par morceaux si et seulement si pour tout $k \in [1, n]$, f_k est continue par morceaux.

Et dans ce cas
$$\int_a^b f = \sum_{k=1}^n \left(\int_a^b f_k \right) \vec{e}_k$$
.

Rappel:

Exponentielle matricielle et exponentielle dans une algèbre de Banach.

Soit A une algèbre de Banach unitaire, avec une norme triple $\| \| \|$ associée à une norme $\| \| \|$ quelconque.

Pour $x \in A$, la série de terme général $\frac{x^n}{n!}$ converge absolument donc converge.

On pose
$$\exp(x) = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$$
.

On sait que $\varphi_x : t \in \mathbb{R} \mapsto \exp(t.x)$ est de classe C^1 , de dérivée

$$\forall t \in \mathbb{R}, \varphi'_{x}(t) = \exp(t.x) \times x = x \times \exp(t.x)$$

Etude dans le cas plus général suivant :

On suppose que I = [0,1], et que $t \in [0,1] \mapsto x(t)$ est de classe C^1 .

Alors $\psi: t \mapsto \exp(x(t))$ est de classe C^1 , et une condition suffisante pour que $\forall t \in [0;1], \psi'(t) = x'(t)e^{x(t)}$ est que x(t) et x'(t) commutent pour tout $t \in [0;1]$.

Démonstration :

Posons, pour
$$t \in [0;1]$$
 et $n \in \mathbb{N}$, $u_n(t) = \frac{x(t)^n}{n!}$.

Alors pour tout $n \in \mathbb{N}$, u_n est de classe C^1 (car $(\alpha, \beta) \in A^2 \mapsto \alpha \times \beta \in A$ est bilinéaire continue)

Et
$$\forall t \in [0;1], u'_n(t) = \frac{1}{n!} (x'(t)x(t)^{n-1} + x(t)x'(t)x(t)^{n-2} + ... + x(t)^{n-1}x'(t))$$

De plus, la série de terme général u_n converge simplement vers φ

Et la série de terme général u'_n converge normalement (donc uniformément) sur [0;1].

En effet:

On pose $A = ||x||_{\infty}$, $B = ||x'||_{\infty}$ (qui existent car x est de classe C^1 sur le compact [0;1])

Alors
$$\forall n \in \mathbb{N}, ||u'_n||_{\infty} \leq \frac{1}{n!} (AB^{n-1} + BAB^{n-2} + ... + B^{n-1}A)$$

Donc $\forall n \in \mathbb{N}^*, \|u'_n\|_{\infty} \leq \frac{AB^{n-1}}{(n-1)!}$, terme général d'une série convergente.

Donc le théorème sur le caractère C^1 des sommes de séries s'applique, donc ψ est de classe

$$C^1$$
 et $\forall t \in [0;1], \psi'(t) = \sum_{n=0}^{+\infty} u'_n(t) = \sum_{n=1}^{+\infty} u'_n(t)$. De plus, si $\forall t \in [0;1], x'(t)x(t) = x(t)x'(t)$,

Alors
$$\forall n \in \mathbb{N}^*, u'_n(t) = x'(t) \frac{x^{n-1}(t)}{(n-1)!}$$
. Et donc $\psi'(t) = x'(t) \sum_{n=1}^{+\infty} \frac{x^{n-1}(t)}{(n-1)!} = x'(t) \psi(t) = \psi(t) x'(t)$.

I Equations différentielles linéaires du premier ordre

On considère un evn E de dimension finie sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . (les résultats sont vrai aussi si E est un espace de Banach, mais en ajoutant la condition que les endomorphismes soient continus)

A) Terminologie

• Equation linéaire de 1^{er} ordre :

(E) x'(t) = a(t).x(t) + b(t) sur un intervalle I de \mathbb{R} .

Où $b:I\to E$ est continue, $a:I\to L_c(E)$ est continue (pour $L_c(E)$ muni de la norme $\|\cdot\|$ associée à $\|\cdot\|$)

Et a(t).x(t) désigne l'image de $x(t) \in E$ par l'endomorphisme continu $a(t) \in L_c(E)$, c'est-à-dire a(t).x(t) = a(t)(x(t))

On appelle solution sur I toute fonction $x: I \to E$ de classe C^1 telle que $\forall x \in I, x'(t) = a(t).x(t) + b(t)$

Lorsque b = 0, on dit que l'équation est homogène sans second membre.

L'équation (e) x'(t) = a(t).x(t) s'appelle l'équation sans second membre associée à (E).

• Structure de l'ensemble des solutions :

Théorème:

L'ensemble $S_{(e)}$ des solutions sur I de (e) est un sous-espace vectoriel de $C^1(I,E)$.

L'ensemble $S_{(E)}$ des solutions sur I de (E) est soit vide, soit un sous-espace affine de $C^1(I,E)$ de direction $S_{(e)}$.

Remarque:

On a même le théorème de Cauchy (montré plus tard) :

Si *I* est non vide, alors $S_{(E)} \neq \emptyset$.

Démonstration:

Le premier point est clair.

Pour le deuxième :

Supposons $S_{(E)} \neq \emptyset$, et considérons $x_0 \in S_{(E)}$.

Alors $x \in S_{(E)} \Leftrightarrow (x - x_0) \in S_{(e)}$.

On a en effet : $\forall t \in I, x'_0(t) = a(t).x(t) + b(t)$

Donc

$$x \in S_{(E)} \iff \forall t \in I, (x - x_0)'(t) = a(t).(x - x_0)(t) + 0$$
$$\iff (x - x_0) \in S_{(e)}$$

Donc $S_{(E)} = x_0 + S_{(e)}$

Problème:

On va s'attacher à montrer que $S_{(E)} \neq \emptyset$ et à l'étude de $S_{(e)}$.

• Problème de Cauchy pour l'équation (E).

Soit *I* un intervalle de \mathbb{R} , $b: I \to E$ continue, $a: I \to L_c(E)$ continue.

On note (E) x'(t) = a(t).x(t) + b(t).

On appelle condition initiale un couple $(t_0, x_0) \in I \times E$

Résoudre le problème de Cauchy (C): $\begin{cases} (E) \ x'(t) = a(t).x(t) + b(t) \\ x(t_0) = x_0 \end{cases}, \text{ c'est trouver}$

toutes les solutions $x: I \to E$ de (E) telles que $x(t_0) = x_0$

Proposition (hors programme):

Equation intégrale associée à un problème de Cauchy :

Soit $x: I \to E$. Les assertions suivantes sont équivalentes :

(1)
$$x$$
 est continue et $\forall t \in I, x(t) = x_0 + \int_{t_0}^t (a(s).x(s) + b(s))ds$

(2) x est de classe C^1 et est solution du problème de Cauchy.

Démonstration :

 $(2) \Rightarrow (1)$: Si x est solution de (E), on a pour tout $t \in I$,

$$x(t) = \int_{t_0}^{t} x'(s)ds + x(t_0) = x_0 + \int_{t_0}^{t} (a(s).x(s) + b(s))ds$$

(1) \Rightarrow (2) : Si x est solution continue de l'équation intégrale, alors

 $s \mapsto a(s).x(s) + b(s)$ est continue.

Donc
$$t \mapsto \int_{t_0}^t (a(s).x(s) + b(s))ds$$
 est de classe C^1

Donc x est de classe C^1

Et en dérivant par rapport à t, on retrouve (E)

Et en prenant $t = t_0$, on aura $x(t_0) = x_0$.

B) Un outil important (HP): lemme de Gronwall

Lemme:

Soit I = [a,b] ou I = [a,b] où $a \in \mathbb{R}$, $b \in \mathbb{R} \cup \{+\infty\}$.

Soient $u, v: I \to \mathbb{R}$ positives et $K \in \mathbb{R}_+$.

On suppose que $\forall t \in I, u(t) \le K + \int_{a}^{t} u(s)v(s)ds$.

Alors $\forall t \in I, u(t) \le K \exp\left(\int_a^t v(s)ds\right)$

Démonstration :

On pose pour $t \in I$, $\varphi(t) = \exp\left(-\int_a^t v(s)ds\right)\left(K + \int_a^t u(s)v(s)ds\right)$

Comme u et v sont continus, φ est de classe C^1 et :

$$\forall t \in I, \varphi'(t) = \exp\left(-\int_a^t v(s)ds\right) \left(u(t)v(t) - v(t)\left(K + \int_a^t u(s)v(s)ds\right)\right) \le 0$$

Donc φ est décroissante.

Mais $\varphi(a) = K$

Donc $\forall t \in I, \varphi(t) \leq K$

Donc
$$\forall t \in I, u(t) \le \varphi(t) \exp\left(\int_a^t v(s) ds\right) \le K \exp\left(\int_a^t v(s) ds\right)$$

Application:

Soient $a,b:[0,+\infty[\to \mathbb{C} \text{ continus intégrables.}]$

Alors toute solution de x'(t) = a(t).x(t) + b(t) sur $[0,+\infty[$ est bornée.

Remarque:

On a supposé ici $E = \mathbb{R}$ ou \mathbb{C} , mais l'énoncé est exact lorsque E est un Banach en remplaçant l'hypothèse a, b intégrables par $t \mapsto ||a(t)||$ et $t \mapsto ||b(t)||$ sont intégrables.

Démonstration:

Soit x une solution de (E).

Pour
$$t \ge 0$$
, $x(t) = x(0) + \int_0^t (a(s).x(s))ds + \int_0^t (b(s))ds$

Donc
$$||x(t)|| \le ||x(0)|| + \int_0^t ||a(s).x(s)|| ds + \int_0^t ||b(s)|| ds \le K + \int_0^t ||a(s)|| ||x(s)|| ds$$

Où
$$K = ||x(0)|| + \int_0^{+\infty} ||b(s)|| ds$$

On a ainsi
$$\forall t \ge 0, ||x(t)|| \le K \exp\left(\int_0^t ||a(s)|| ds\right) \le K \exp\left(\int_0^{+\infty} ||a(s)|| ds\right)$$

Donc x est bornée.

C) Théorème de Cauchy pour les équations différentielles linéaires

• Enoncé:

Théorème:

Soit I un intervalle de \mathbb{R} , E un Banach (au programme : seulement de dimension finie). Soient $b: I \to E$ et $a: I \to L_c(E)$ continues, où on a muni $L_c(E)$ de la norme triple associée au produit scalaire.

Alors:

Pour toute condition initiale $(t_0, x_0) \in I \times E$, il existe une unique solution φ de classe C^1 au problème de Cauchy $\begin{cases} x'(t) = a(t).x(t) + b(t) \\ x(t_0) = x_0 \end{cases}$

Remarque:

C'est un théorème idéal!

Interprétation en terme d'espace de solution :

Soit (E):x'(t) = a(t).x(t) + b(t), (e) l'équation sans second membre associée x'(t) = a(t).x(t). On note $S_{(E)}$ l'ensemble des solutions de (E), $S_{(e)}$ celui des solutions de (e).

Corollaire:

(1) Pour $S_{(e)}$: c'est un sous-espace vectoriel de $C^1(I,E)$ (déjà vu), et pour tout $t_0 \in I$, l'application $\theta_{t_0}: S_{(e)} \to E$ est un isomorphisme de \mathbb{K} -espaces $\varphi \mapsto \varphi(t_0)$

vectoriels. En particulier, si E est de dimension finie, alors l'espace des solutions de (e) a la même dimension.

(2) Pour $S_{(E)}$: c'est un sous-espace affine de $C^1(I,E)$ (donc non vide), de direction $S_{(e)}$, et pour tout $t_0 \in I$, $S_{(E)} \to E$ est une bijection affine. $\varphi \mapsto \varphi(t_0)$

Démonstration (du corollaire):

(1) L'application θ_{t_0} est linéaire, et d'après le théorème de Cauchy appliqué à (e), pour tout $x_0 \in E$, il existe un unique $\varphi \in S_{(e)}$ tels que $\theta_{t_0}(\varphi) = x_0$.

Donc θ_{t_0} est bijective. Donc c'est un isomorphisme.

(2) De même, pour tout $x_0 \in E$, il existe $\varphi \in S_{(E)}$ unique tel que $\theta_{t_0}(\varphi) = x_0$, donc $\theta_{t_0}: S_{(E)} \to E$ est bijective. $\varphi \mapsto \varphi(t_0)$

Illustration:

Soit *E* un \mathbb{C} -ev de dimension $n \ge 1$.

Soit $a: \mathbb{R} \to L(E)$, continue et 2π -périodique. Existe-t-il des solutions 2π -périodiques non nulles à l'équation (e): x'(t) = a(t).x(t)?

Non en général:

Par exemple, avec $E = \mathbb{C}$, et $a: t \to \mathrm{Id}_{\mathbb{C}}$ est 2π -périodique, et (e) s'écrit :

(e): x'(t) = x(t), de solution générale $x(t) = Ke^t$ dont aucune n'est périodique sauf la fonction nulle.

Mais il existe une solution non nulle $\varphi : \mathbb{R} \to E$ de classe C^1 et $\lambda \in \mathbb{C}^*$ tels que $\forall t \in \mathbb{R}, \varphi(t+2\pi) = \lambda \varphi(t)$.

En effet:

Soit S l'ensemble des solutions de (e). Alors S est un \mathbb{C} -ev de dimension n (d'après le théorème de Cauchy)

Pour $\varphi \in S$, l'application $\psi : t \mapsto \varphi(t+2\pi)$ est dans S.

En effet,
$$\forall t \in I, \psi'(t) = \varphi'(t+2\pi) = \underbrace{a(t+2\pi)}_{=a(t)} \varphi(t+2\pi) = a(t).\psi(t)$$

De plus, $\varphi \in S \mapsto \psi \in S$ est bijective :

C'est une application linéaire, et injective car si $\psi = 0$, alors $\forall t \in \mathbb{R}, \varphi(t) = 0$, et donc bijective car en dimension finie.

Cet endomorphisme admet des valeurs propres (car $n \ge 1$, et $\mathbb C$ est algébriquement clos)

Donc il existe $\lambda \neq 0$ (car l'application est bijective) et $\varphi \in S \setminus \{0\}$ tels que $\psi = \lambda \varphi$

- Démonstration du théorème :
- (1) Démonstration élémentaire de l'unicité avec Gronwall :

Soient φ_1, φ_2 deux solutions du problème de Cauchy $\begin{cases} (E): x'(t) = a(t).x(t) + b(t) \\ x(t_0) = x_0 \end{cases}$

Alors
$$z = \varphi_1 - \varphi_2$$
 vérifie
$$\begin{cases} z' = az \\ z(t_0) = 0 \end{cases}$$

Donc
$$\forall t \in I, z(t) = 0 + \int_{t_0}^{t} z'(u) du = \int_{t_0}^{t} a(u).z(u) du$$

Pour
$$t \ge t_0$$
, $||z(t)|| \le \int_{t_0}^{t} ||a(u).z(u)|| du \le \int_{t_0}^{t} ||a(u)|| ||z(u)|| du$

On pose alors u(t) = ||z(t)||, v(t) = ||a(t)|| pour $t \ge t_0$.

Ainsi, u et v sont positives, continues, et vérifient :

$$\forall t \ge t_0, u(t) \le 0 + \int_{t_0}^t u(u)v(u)du$$

Donc $\forall t \ge t_0, u(t) \le 0e^{\int_{t_0}^t v(u)du}$, c'est-à-dire $\forall t \ge t_0, ||z(t)|| = 0$

Pour $t \le t_0$:

Posons
$$y(t) = z(-t)$$
. On a
$$\begin{cases} y'(t) = -z'(-t) = -a(-t).z(-t) = -a(-t).y(t) \\ y(-t_0) = 0 \end{cases}$$

Donc, de même, $\forall t \ge -t_0$, y(t) = 0, c'est-à-dire $\forall t \le t_0$, z(t) = 0

(2) Pour l'existence :

On considère l'équation intégrale $x(t) = x_0 + \int_0^t a(s).x(s)ds$

On doit montrer que cette équation admet au moins une solution $\varphi: I \to E$ continue.

Posons, pour $t \in I$, $\varphi_0(t) = x_0$.

Et par récurrence, pour
$$n \in \mathbb{N}$$
, $\varphi_n(t) = x_0 + \int_{t_0}^t a(s) \cdot \varphi_n(s) ds$

Montrons que la suite $(\varphi_n)_{n\in\mathbb{N}}$ converge uniformément sur tout segment [a,b] de I contenant t_0 .

Pour cela, on va montrer que la série de terme général $u_n = \varphi_{n+1} - \varphi_n$ est normalement convergente sur [a,b]. (Comme E est complet, la suite de terme général

$$\varphi_n = \varphi_0 + \sum_{k=1}^n \varphi_k - \varphi_{k-1}$$
 converge alors uniformément sur $[a,b]$)

On a pour tout $t \in [a,b]$ et $n \ge 1$,

$$u_n(t) = \int_{t_0}^t a(s) \cdot (\varphi_n(s) - \varphi_{n-1}(s)) ds = \int_{t_0}^t a(s) \cdot u_{n-1}(s) ds$$

Posons alors $K = \sup_{t \in [a,b]} ||a(t)||$ (existe car a est continue et [a,b] est compact)

Et
$$M = \sup_{t \in [a,b]} ||u_0(t)||$$
 (existe car $u_0 = \varphi_1 - \varphi_0$ est continue sur $[a,b]$)

Montrons alors par récurrence que $\forall n \in \mathbb{N}, \forall t \in [a,b], |u_n(t)| \leq M \frac{K^n}{n!} |t-t_0|^n$:

- Pour n = 0, c'est vrai par définition de M.

- Soit $n \in \mathbb{N}^*$, supposons l'inégalité vraie pour n-1 Alors

$$\forall t \in [a,b], |u_n(t)| \le \varepsilon(t) \int_{t_0}^t ||a(s)|| ||u_{n-1}(s)|| ds \text{ où } \varepsilon(t) = \operatorname{sgn}(t - t_0)$$

$$\le K \varepsilon(t) \int_{t_0}^t \frac{K^{n-1}}{(n-1)!} M |s - t_0|^{n-1} ds$$

$$\le M \frac{K^n}{n!} |t - t_0|^n$$

Ce qui achève la récurrence.

Conséquence:

 $\forall n \in \mathbb{N}, \|u_n\|_{\infty} \leq M \frac{K^n}{n!} (b-a)^n$, terme général d'une série convergente.

Conclusion:

 $(\varphi_n)_{n\in\mathbb{N}}$ converge uniformément vers une fonction $\varphi:I\to E$ qui est continue car les φ_n le sont.

De plus, en passant à la limite dans $\varphi_{n+1}(t) = x_0 + \int_{t_0}^t a(s).\varphi_n(s)ds$, on a $\varphi(t) = x_0 + \int_{t_0}^t a(s).\varphi(s)ds$

En effet, $\int_{t_0}^t a(s).\varphi_n(s)ds \xrightarrow[n \to +\infty]{} \int_{t_0}^t a(s).\varphi(s)ds$ car on intègre sur un segment et $a.\varphi_n$ converge uniformément sur $[t_0,t] \subset [a,b]$ vers $a.\varphi$.

Donc φ est la solution cherchée.

Remarque:

La construction de φ est une construction par itération, basée sur le théorème du point fixe.

Si on se limite à $[a,b] \subset I$ contenant t_0 , l'application $\Theta : E = C^0([a,b], \mathbb{C}) \to E$ où $\varphi \mapsto \psi$ $\forall t \in [a,b], \psi(t) = x_0 + \int_{t_0}^t a(s).\varphi(s)ds$ n'est pas contractante, mais a un itéré contractant pour $\|\cdot\|_{\infty}$ sur E (C'est-à-dire qu'il existe un entier N tel que $\Theta \circ \Theta \dots \circ \Theta$ soit contractante)

D) Application aux équations différentielles linéaires d'ordre r.

Définition :

Soit E un Banach, I un intervalle de \mathbb{R} .

Une équation différentielle d'ordre r à valeurs dans E, c'est une équation de la forme (E_r) : $x^{(r)}(t) = a_0(t).x(t) + ... + a_{r-1}(t).x^{(r-1)} + b(t)$

Où $b: I \to E$ et pour $j \in [0, r-1], a_j: I \to L_c(E)$ sont des applications continues, et où x est de classe C^r .

L'équation sans second membre associée est

$$(e_r): x^{(r)}(t) = a_0(t).x(t) + ... + a_{r-1}(t).x^{(r-1)}(t)$$

• Equation d'ordre 1 équivalente à (E_r) :

Pour
$$x: I \to E$$
 de classe C^r , on pose $y: I \to E^r$
 $t \mapsto (x(t), x'(t) \dots x^{(r-1)}(t))$

Alors x est solution de (E_x) si et seulement si y vérifie :

$$\forall t \in I, y'(t) = \left(x'(t), \dots x^{(r-1)}(t), \sum_{j=0}^{r-1} a_j(t) \cdot x^{(j)}(t) + b(t)\right)$$

Pour $t \in I$, on pose $B(t) = (0, ..., 0, b(t)) \in E^r$,

et on définit pour $t \in I$ l'endomorphisme A(t) de E^r par

Proposition:

Soit
$$y: I \to E^r$$

$$t \mapsto (y_0(t), ... y_{r-1}(t))$$

Alors y est solution de (F): y'(t) = A(t).y(t) + B(t) si et seulement si :

- y_0 est de classe C^r

-
$$\forall j \in [0, r-1], y_j = y_0^{(j)}$$

- y_0 est solution de (E_r) .

Remarque:

Intérêt : on ramène la résolution d'une équation d'ordre r à valeurs dans E à celle d'une équation d'ordre 1 à valeurs dans E^r

Exemple:

Soit (E_2) l'équation scalaire x''(t) = a(t).x(t) + b(t).x'(t) + c(t) où a, b, c sont continues de I dans \mathbb{C} .

Equation d'ordre 1 associée :

On pose
$$V(t) = \begin{pmatrix} x(t) \\ x'(t) \end{pmatrix}$$

Alors
$$x$$
 est solution de (E_2) si et seulement si V vérifie :
$$V'(t) = \begin{pmatrix} x'(t) \\ a(t).x(t) + b(t).x'(t) + c(t) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ a(t) & b(t) \end{pmatrix} \begin{pmatrix} x(t) \\ x'(t) \end{pmatrix} + \begin{pmatrix} 0 \\ c(t) \end{pmatrix}$$

Donc l'équation du premier ordre associée à (E_2) est :

$$(F): V'(t) = \begin{pmatrix} 0 & 1 \\ a(t) & b(t) \end{pmatrix} V(t) + \begin{pmatrix} 0 \\ c(t) \end{pmatrix}.$$

Ainsi, $V(t) = \begin{pmatrix} y_0(t) \\ v_0(t) \end{pmatrix}$, de classe C^1 , est solution de (F) si et seulement si y_0 est

de classe C^2 , $y_1 = y_0'$ et y_0 est solution de (E_2) .

Démonstration de la proposition :

On a vu déjà ← avant la proposition. Réciproquement :

Si y est solution de classe C^1 de (F), alors pour tout $t \in I$,

$$(y'_{0}(t),...,y'_{r-1}(t)) = \underbrace{(y_{1}(t),...y_{r-1}(t),a_{0}(t).y_{0}(t) + ... + a_{r-1}(t).y_{r-1}(t))}_{A(t),y(t)} + (0,...b(t))$$

Donc
$$\forall j \le r-1, y_j = y_{j-1}$$

Et
$$\forall t \in I, y'_{r-1}(t) = \sum_{k=0}^{r-1} a_j(t).y_j(t) + b(t)$$

Donc y_0 est de classe C^r ,

Et
$$\forall j \le r - 1, y_i = y_0^{(j)}$$

Donc
$$\forall t \in I, y_0^{(r-1)}(t) = \sum_{k=0}^{r-1} a_j(t).y_0^{(j)}(t) + b(t)$$

• Théorème de Cauchy pour l'ordre *r* :

Théorème:

Sous les hypothèses précédentes (b, a_i continues):

Pour toute condition initiale $(t_0, x_0...x_{r-1}) \in I \times E^r$, le problème de Cauchy :

$$x^{(r)}(t) = \sum_{j=0}^{r-1} a_j(t) \cdot x^{(j)}(t) + b(t)$$

$$x(t_0) = x_0, \ x'(t_0) = x_1, \dots, \ x^{(r-1)}(t_0) = x_{r-1}$$

Admet une unique solution x de classe C^r sur I.

• En termes de structure :

Théorème:

- Sous les même hypothèses de continuité,

Pour tout $t_0 \in I$, l'application $\theta_{t_0}: S_{(e_r)} \to E^r$ est un isomorphisme $\varphi \mapsto (\varphi(t_0), ... \varphi^{(r-1)}(t_0))$

de K-espaces vectoriels.

- De même, $S_{(E_r)} \to E^r$ est une bijection affine. $\varphi \mapsto (\varphi(t_0), ... \varphi^{(r-1)}(t_0))$

Corollaire:

Si E est de dimension finie n sur \mathbb{K} , alors $S_{(e_r)}$ est un \mathbb{K} -ev de dimension nr.

Et $S_{(E_n)}$ est un espace affine de dimension nr.

Autrement dit, la solution générale dépend de *nr* paramètres fixés par les conditions initiales.

Démonstration :

Les deux théorèmes et le corollaire découlent de la proposition précédente.

Exercice:

Soit $(E_2): x''(t) = a(t).x(t) + b(t).x'(t)$ où $a,b:I \to \mathbb{C}$ sont continues.

Alors toute solution x non nulle de (E_2) a ses zéros isolés, c'est-à-dire que si $t_0 \in I$ vérifie $x(t_0) = 0$, alors il existe $\alpha > 0$ tel que

$$\forall t \in]t_0 - \alpha, t_0 + \alpha[\cap I, x(t) = 0 \Leftrightarrow t = t_0]$$

Si de plus $I=\mathbb{R}_+$ et si x a une infinité de 0, alors on peut les classer dans une suite $(t_n)_{n\in\mathbb{N}}$ de \mathbb{R}_+ strictement croissante et tendant vers $+\infty$.

En effet:

Soit x une solution non nulle de (E_2) , et $t_0 \in I$. On suppose que $x(t_0) = 0$.

Alors $x'(t_0) \neq 0$

En effet, sinon x vérifie (E_2) et les conditions initiales $\begin{cases} x(t_0) = 0 \\ x'(t_0) = 0 \end{cases}$

Donc comme 0 est aussi solution de ce problème de Cauchy, par unicité, x = 0 ce qui est exclu.

Donc $x'(t_0) \neq 0$.

Donc
$$\lim_{t \to t_0} \frac{x(t)}{t - t_0} = x'(t_0) \neq 0$$

Il existe donc $\alpha > 0$ tel que $\forall t \in [t_0 - \alpha, t_0 + \alpha], |x(t)| \ge \frac{1}{2}|x'(t_0)||t - t_0||$

On suppose maintenant que $I = \mathbb{R}_+$. Soit x une solution non nulle de (E_2) .

Sur tout segment $[0, A] \subset \mathbb{R}_+$, x s'annule un nombre fini de fois.

En effet, supposons qu'une solution x a une infinité de zéros, et prenons donc $(t_n)_{n\in\mathbb{N}}$ une suite d'éléments distincts de [0,A] telle que $\forall n\in\mathbb{N}, x(t_n)=0$.

Comme $(t_n)_{n\in\mathbb{N}}$ est bornée, elle admet une valeur d'adhérence. Soit $\varphi:\mathbb{N}\to\mathbb{N}$ strictement croissante telle que $(t_{\varphi(n)})_{n\in\mathbb{N}}$ converge, disons vers $\alpha\in[0,A]$

Par continuité de x, on a ainsi $x(\alpha) = 0$ mais α n'est pas isolé, donc x = 0.

Posons alors $Z = \{t \in \mathbb{R}_+, x(t) = 0\}$.

On suppose que Z est infini.

Soit $t \in Z$. Alors $[0,t] \cap Z$ est non vide (contient t) et fini, donc admet un plus petit élément t_0 , qui est aussi le plus petit élément de Z (car les autres éléments de Z sont plus grand que t)

On pose ensuite $t_1 = \min Z \setminus \{t_0\}, \dots t_k = \min Z \setminus \{t_0, \dots t_{k-1}\}$

Alors la suite $(t_k)_{k \in \mathbb{N}}$ est strictement croissante,

Et $t_k \xrightarrow[k \to +\infty]{} +\infty$ car sinon $(t_k)_{k \in \mathbb{N}}$ serait majorée par $M \in \mathbb{R}_+$ et [0, M] contiendrait une infinité de zéros.

On a de plus épuisé Z avec cette suite :

Soit $u \in Z$

Alors $u \ge t_0$.

Il existe donc $k \in \mathbb{N}^*$ tel que $t_{k-1} \le u < t_k$

Mais par définition de t_k , $t_{k-1} = u$

Donc $Z \subset \{t_k, k \in \mathbb{N}\}$

D'où le résultat.

II Cas de la dimension finie

A) Equation linéaire scalaire du premier ordre

• Définition :

Soit (E): a(t).x'(t) + b(t).x(t) + c(t) = 0 où $a,b,c:I \to \mathbb{K}$ sont continues $(\mathbb{K} = \mathbb{R}$ ou $\mathbb{C})$

On suppose que a ne s'annule pas sur I.

On a donc la forme résolue $x'(t) = \alpha(t).x(t) + \beta(t)$ où $\alpha = \frac{-b}{a}$ et $\beta = \frac{-c}{a}$, continues sur I.

Attention:

Si a s'annule, il faut découper I en sous intervalles sur lesquels a ne s'annule pas, et on fait ensuite des raccordement là où a s'annule.

• Résolution par quadrature (c'est-à-dire par calcul de primitive)

Théorème :

Soit (E): $x'(t) = \alpha(t).x(t) + \beta(t)$ où $\alpha, \beta: I \to \mathbb{R}$ sont continues.

On note (e) l'équation sans second membre associée $x'(t) = \alpha(t).x(t)$.

(1) La solution générale de (*e*) est $x(t) = K.e^{\int \alpha(t)dt}$

(2) Pour tout
$$(t_0, x_0) \in I \times \mathbb{R}$$
, la solution du problème de Cauchy
$$\begin{cases} (E) \\ x(t_0) = x_0 \end{cases}$$
 est

$$x(t) = \left(x_0 + \int_{t_0}^t \beta(s)e^{-A(s)}ds\right)e^{A(t)}$$
 où $A(t) = \int_{t_0}^t \alpha(s)ds$

Démonstration:

(1) Pour $x: I \to \mathbb{K}$ de classe C^1 , posons $y(t) = x(t)e^{-A(t)}$ où A est une primitive de α . On a alors $\forall t \in I$, $y'(t) = e^{-A(t)}(x'(t) - \alpha(t).x(t))$

Donc x est solution de (e) si et seulement si y'=0, c'est-à-dire si et seulement si y est constante (car I est un intervalle)

(2) Soit
$$A(t) = \int_{t_0}^t \alpha(s) ds$$
 pour $t \in I$. Alors A est de classe C^1 et $A' = \alpha$.

Soit $x: I \to \mathbb{K}$ de classe C^1 .

On pose pour $t \in I$, $k(t) = e^{-A(t)}x(t)$.

Alors k est de classe C^1 , et $\forall t \in I, k'(t) = e^{-A(t)}(x'(t) - \alpha(t).x(t))$

Donc x est solution du problème de Cauchy si et seulement si

$$\begin{cases} k'(t) = \beta(t)e^{-A(t)} \\ k(t_0) = x_0 \end{cases}$$

C'est-à-dire si et seulement si $k(t) = x_0 + \int_{t_0}^{t} \beta(s)e^{-A(s)}ds$

Soit
$$x(t) = e^{A(t)}k(t)$$
.

Exemple:

Résoudre $x(x^2 - 1).y'(x) + 2y(x) = x^2$

Forme résolue :

$$y'(x) = \frac{-2}{x(x^2 - 1)} y(x) + \frac{x}{x^2 - 1} \text{ sur un intervalle } I \subset \mathbb{R} \setminus \{0, 1, -1\}.$$

Une primitive de
$$x \mapsto \frac{1}{x(x^2 - 1)} = \frac{-1}{x} + \frac{1}{2(x - 1)} + \frac{1}{2(x + 1)}$$
 est

$$\int \frac{dx}{x(x^2 - 1)} = \frac{1}{2} \ln \left| \frac{(x - 1)(x + 1)}{x^2} \right|$$

Solution de d'équation sans second membre :

$$y(x) = K \left| \frac{x^2}{(x-1)(x+1)} \right| = K' \frac{x^2}{(x-1)(x+1)}$$

Variation de la constante : $y(x) = K(x) \frac{x^2}{x^2 - 1}$

Alors K vérifie
$$K'(x) \frac{x^2}{x^2 - 1} = \frac{x}{x^2 - 1}$$
, soit $K'(x) = \frac{1}{x}$, donc $K(x) = \ln|x| + A$

Sur *I*, la solution générale est donc $y(x) = \frac{x^2}{x^2 - 1} (A + \ln|x|)$.

Peut-on avoir une solution sur \mathbb{R} ?

- Raccordement en 1 : sur
$$]1,+\infty[,y(x)=\frac{x^2}{x^2-1}(A_1+\ln|x|)]$$

Sur
$$]0,1[, y(x) = \frac{x^2}{x^2 - 1} (A_2 + \ln|x|)]$$

Peut-on choisir A_1, A_2 pour que le raccordement soit continu ou C^1 en 1?

Déjà, si $A_1 \neq 0$, $\lim_{x \to 1^+} y(x) = \pm \infty$. Si $A_1 = 0$, on a en posant x = 1 + h:

$$y(1+h) = \frac{(1+h)^2(h-h^2/2+o(h^2))}{(1+h)^2-1} = \frac{(2h+O(h^2))(h-h^2/2+O(h^3))}{2h+h^2}$$
$$= \frac{1+2h+O(h^2)}{2+h} = \frac{1+\frac{3}{2}h+O(h^2)}{2} \left(1-\frac{h}{2}+O(h^2)\right) = \frac{1+h}{2}+O(h^2)$$

Donc y a un prolongement dérivable à droite en 1, avec $y(1) = y'(1) = \frac{1}{2}$

- C'est la même chose en 1⁻. Donc il existe une unique solution dérivable sur

$$]0,+\infty[$$
, à savoir $y(x) = \begin{cases} \frac{x^2}{x^2 - 1} \ln|x| & \text{si } x \neq 1\\ 1/2 & \text{si } x = 1 \end{cases}$

- On peut même faire un raccordement dérivable en 0 (et ce quels que soient A_1,A_2) : $y(x) {\sim \atop x\to 0} -x^2 \ln |x|$

On peut donc raccorder avec y(0) = y'(0) = 0

Conclusion:

Les solutions de (E) sont :

Sur
$$I =]-\infty, -1[$$
 ou $]-1,0[$ ou $]0,1[$ ou $]1,+\infty[$, $y(x) = \frac{x^2}{x^2 - 1}(\ln|x| + c)$

Sur
$$\mathbb{R}$$
 ou $]0,+\infty[$ ou $]-\infty,0[$: $y(x) = \begin{cases} \frac{1/2}{x^2} & \text{si } x = \pm 1\\ \frac{x^2}{x^2 - 1} \ln|x| & \text{si } x \neq 0,1,-1 \text{ (Une seule solution)}\\ 0 & \text{si } x = 0 \end{cases}$

Sur]-1,1[: on a un espace affine de dimension 2 de solutions dérivables

$$y(x) = \begin{cases} \frac{x^2}{x^2 - 1} (\ln|x| + A_1) & \text{si } x > 0\\ 0 & \text{si } x = 0\\ \frac{x^2}{x^2 - 1} (\ln|x| + A_2) & \text{si } x < 0 \end{cases}$$

Exercice:

Soit $a \in \mathbb{C}$

On considere (E): y'(x) + ay(x) = f(x), où $f: [0, +\infty[\rightarrow \mathbb{C} \text{ est continue.}]$

Trouver une condition nécessaire et suffisante sur $a \in \mathbb{C}$ pour que si $f \xrightarrow[+\infty]{} 0$, toute solution de E tend vers 0 en $+\infty$.

Généraliser à une équation de la forme y''(x) + ay'(x) + by(x) = f(x)

(ou même d'ordre *r*)

Condition nécessaire :

La solution générale de l'équation sans second membre est $y(x) = Ke^{-a.x}$.

On note g une solution de l'équation. Ainsi, $g(x) \xrightarrow[x \to +\infty]{} 0$.

Donc la solution générale est $y(x) = Ke^{-a.x} + g(x)$. Il faut donc que Re(a) > 0.

Cette condition est aussi suffisante :

Variation de la constante :

On cherche une solution sous la forme $y(x) = K(x)e^{-a.x}$

Ainsi, K vérifie
$$K'(x)e^{-a.x} = f(x)$$
, soit $K(x) = \int_0^x f(t)e^{a.t}dt + K'$,

Et une solution de (E) s'écrit sous la forme $g(x) = \left(\int_0^x f(t)e^{at}dt + K'\right)e^{-ax}$

On va montrer que
$$e^{-a.x} \int_0^x f(t)e^{a.t} dt \xrightarrow[x \to +\infty]{} 0$$

Soit
$$\varepsilon > 0$$
. Il existe $T \in \mathbb{R}_+$ tel que $\forall t \ge T, |f(t)| \le \frac{\varepsilon}{2} \operatorname{Re}(a) = \varepsilon'$

Ainsi, pour $x \ge T$,

$$\left| \int_{0}^{x} f(t)e^{a.t}dt \right| \leq \left| \int_{0}^{T} f(t)e^{a.t}dt \right| + \left| \int_{T}^{x} f(t)e^{a.t}dt \right|$$

$$\leq A + \int_{T}^{x} |f(t)| |e^{a.t}|dt$$

$$\leq A + \mathcal{E}' \int_{T}^{x} e^{\operatorname{Re}(a).t}dt$$

$$\leq A + \frac{\mathcal{E}'}{\operatorname{Re}(a)} (e^{\operatorname{Re}(a).x} - e^{\operatorname{Re}(a).T}) \leq A + \frac{\mathcal{E}'}{\operatorname{Re}(a)} e^{\operatorname{Re}(a).x}$$

Et donc pour
$$x \ge T$$
, $\left| e^{-a.x} \int_0^x f(t) e^{a.t} dt \right| \le A e^{-\operatorname{Re}(a)x} + \frac{\mathcal{E}'}{\operatorname{Re}(a)} = A e^{-\operatorname{Re}(a)x} + \frac{\mathcal{E}}{2}$

Or, il existe
$$X \in \mathbb{R}_+$$
 tel que $\forall x \ge X, Ae^{-\operatorname{Re}(a)x} \le \frac{\varepsilon}{2}$

Ainsi, pour
$$x \ge \max(T, X)$$
, $\left| e^{-a.x} \int_0^x f(t) e^{a.t} dt \right| \le \varepsilon$

Et donc
$$e^{-a.x} \int_0^x f(t)e^{a.t} dt \xrightarrow[x \to +\infty]{} 0$$

Donc la condition est aussi suffisante.

Soient α , β les racines complexes de $r^2 + a.r + b = 0$

On note D l'opérateur de dérivation :

Ainsi,
$$D^2 + a.D + bId = (D - \alpha.Id) \circ (D - \beta.Id)$$

Une condition nécessaire et suffisante est que $Re(\alpha) < 0$ et $Re(\beta) < 0$.

En effet, la condition est nécessaire :

Soit g_0 une solution particulière de l'équation.

Une autre solution de cette équation est $t \mapsto g_0(t) + e^{\alpha t}$, qui doit tendre vers 0 en $+\infty$. Ainsi, $\text{Re}(\alpha) < 0$ et de même $\text{Re}(\beta) < 0$.

La condition est suffisante:

Soit *y* une solution de l'équation.

Alors
$$(D - \alpha.\text{Id}) \circ \underbrace{(D - \beta.\text{Id})(y)}_{z} = f$$
. Donc d'après le cas précédent, $z \to 0$

(puisque z vérifie $z'-\alpha . z = f$ et $Re(-\alpha) > 0$)

Puis par définition de z, $(D-\beta.\mathrm{Id})(y)=z$, donc comme z tend vers 0, toujours d'après la première partie on aura $y \to 0$, d'où le résultat.

Remarque:

Le cas général est le théorème de Lyapunov :

Pour f tendant vers 0, toute solution de (E_r) : $y^{(r)} + a_1 y^{(r-1)} + ... + a_r y = f$ tend vers 0 si et seulement si les racines de l'équation caractéristique ont des parties réelles strictement négatives.

B) Wronskien et systèmes fondamentaux de solutions d'une équation homogène

• Cadre:

On considère des équations de la forme

(e):
$$x'(t) = a(t).x(t)$$
 avec $a: I \to L(E)$ continue, où E est un espace de dimension $t \mapsto a(t)$

n finie.

On peut l'écrire sous forme matricielle $X'(t) = A(t) \times X(t)$

Rappel:

L'ensemble $S_{(e)}$ des solutions de (e) sur I est un sous-espace vectoriel de $C^1(I,E)$ de dimension n.

Et pour tout $t_0 \in I$, $\theta_{t_0} : S_{(e)} \to E$ est un isomorphisme de \mathbb{K} -ev. $\varphi \mapsto \varphi(t_0)$

• Système fondamental de solution de (E) :

Définition:

On appelle système fondamental de solution de (E) toute base $(\varphi_1,...\varphi_n)$ de $S_{(e)}$.

• Wronskien:

Définition:

Soit $(\alpha_1,...\alpha_n)$ un système de n solutions de (E) (pas forcément un système fondamental). On fixe une base \mathfrak{B}_0 de E.

On appelle Wronskien de $(\alpha_1,...\alpha_n)$ dans \mathfrak{B}_0 l'application :

$$\begin{array}{l} I \to \mathbb{R} \\ t \mapsto W_{(\alpha_1, \dots \alpha_n), \mathfrak{B}_0} = \det_{\mathfrak{B}_0}(\alpha_1(t), \dots \alpha_n(t)) \end{array}$$

Remarque:

Si on remplace \mathfrak{B}_0 par une autre base \mathfrak{B}_1 ,

Alors
$$W_{(\alpha_1,\dots,\alpha_n),\mathfrak{B}_0} = \det_{\mathfrak{B}_0}(\mathfrak{B}_1).W_{(\alpha_1,\dots,\alpha_n),\mathfrak{B}_1}$$

Démonstration

Si $M(t) = \max_{\mathfrak{B}_0} (\alpha_1(t), ..., \alpha_n(t))$ et $\hat{M}(t) = \max_{\mathfrak{B}_1} (\alpha_1(t), ..., \alpha_n(t))$, et en notant P la matrice de passage de \mathfrak{B}_0 à \mathfrak{B}_1 , on a $M(t) = P\hat{M}(t)$,

et donc $det(M(t)) = det(P) det(\hat{M}(t))$

Théorème:

On note \mathfrak{B}_0 une base de E.

On suppose que l'application $t \mapsto a(t) \in L(E) = L_c(E)$ est continue.

Soient $\varphi_1,...\varphi_n$ des solutions sur *I* de (e).

Alors les conditions suivantes sont équivalentes :

- (1) $(\varphi_1,...\varphi_n)$ est un système fondamental de solution.
- (2) $W_{(\varphi_1,...\varphi_n),\mathfrak{B}_0}$ ne s'annule pas sur I.
- (3) $W_{(\varphi_1,\dots\varphi_n),\mathfrak{B}_0}$ n'est pas la fonction nulle.

Démonstration:

On sait que pour tout $t \in I$, $\theta_t : S_{(e)} \to E$ est un isomorphisme.

 $(1) \Rightarrow (2)$: Soit $(\varphi_1,...\varphi_n)$ un système fondamental de solution et soit $t \in I$.

Alors $(\theta_t(\varphi_1),...\theta_t(\varphi_n))$ est une base de E.

Donc $W_{(\varphi_1,...\varphi_n),\mathfrak{B}_0}(t) = \det_{\mathfrak{B}_0}(\theta_t(\varphi_1),...\theta_t(\varphi_n)) \neq 0$

 $(2) \Rightarrow (3) \dots$

(3) \Rightarrow (1) : On suppose que $W_{(\varphi_1,\dots,\varphi_n),\mathfrak{B}_0}(t_0) \neq 0$ pour $t_0 \in I$.

Alors $(\theta_{t_0}(\varphi_1),...\theta_{t_0}(\varphi_n))$ est une base de E, donc $(\varphi_1,...\varphi_n)$ est une base de $S_{(e)}$.

• Complément : expression du Wronskien :

Lemme:

Soit E un \mathbb{K} -ev de dimension finie n, et $u \in L_{\mathbb{K}}(E)$.

Pour tout $(v_1,...v_n) \in E^n$ et toute base \mathfrak{B}_0 de E,

$$\sum_{j=1}^{n} \det_{\mathfrak{B}_{0}}(v_{1},...v_{j-1},u(v_{j}),v_{j+1},...v_{n}) = \operatorname{Tr}(u) \times \det_{\mathfrak{B}_{0}}(v_{1},...v_{n})$$

Remarque:

On a $\det_{\mathfrak{B}_0}(u(v_1),...u(v_n)) = \det(u).\det_{\mathfrak{B}_0}(v_1,...v_n)$ (il suffit de voir avec les matrices) Démonstration :

Posons
$$\psi(v_1,...v_n) = \sum_{j=1}^n \det_{\mathfrak{B}_0}(v_1,...v_{j-1},u(v_j),v_{j+1},...v_n)$$

Alors ψ est *n*-linéaire, et alternée :

On suppose que $v_k = v_l$ pour $1 \le k < l \le n$

Ainsi, il reste

$$\psi(v_1,...v_n) = \det_{\mathfrak{B}_0}(v_1,...v_{k-1},u(v_k),v_{k+1},...v_n) + \det_{\mathfrak{B}_0}(v_1,...v_{l-1},u(v_l),v_{l+1},...v_n)$$

$$= 0$$

Mais l'ensemble des formes *n*-linéaires alternées sur E^n est un \mathbb{K} -ev de dimension 1, donc il existe $k \in \mathbb{K}$ tel que $\varphi = k \det_{\mathfrak{B}_n}$

Calcul de k: on a $k = \varphi(\mathfrak{B}_0)$.

On note $\mathfrak{B}_0 = (e_1, ... e_n)$, et $A = \text{mat}_{\mathfrak{B}_0}(u)$.

Alors
$$\forall j \in [1, n], u(e_j) = \sum_{i=1}^n a_{i,j} e_i$$

Donc

$$\varphi(\mathfrak{B}_0) = \det(a_{1,1}e_1 + \dots + a_{n,1}e_n, e_2, \dots e_n) + \dots$$

= $a_{1,1} + a_{2,2} + \dots = \operatorname{Tr}(A) = \operatorname{Tr}(u)$

Application au Wronskien:

Proposition:

Soient $\alpha_1,...\alpha_n$ n solutions de (E). Alors il existe $k \in \mathbb{K}$ tel que

$$\forall t \in I, W_{(\alpha_1, \dots \alpha_n), \mathfrak{B}_0}(t) = Ke^{\int \operatorname{Tr}(a(t)) dt}$$

Remarque:

On comprend maintenant pourquoi (2) ⇔ (3) dans le théorème précédent.

Démonstration:

On pose
$$W(t) = W_{(\alpha_1,...\alpha_n),\mathfrak{B}_0}(t) = \det_{\mathfrak{B}_0}(\alpha_0(t),...\alpha_n(t))$$

Comme les α_i , i = 1..n sont de classe C^1 , W est de classe C^1 et

$$\forall t \in I, W'(t) = \det_{\mathfrak{B}_0}(\alpha'_1(t), \alpha_2(t)...\alpha_n(t)) + \det_{\mathfrak{B}_0}(\alpha_1(t), \alpha'_2(t),...) + ...$$

Or,
$$\forall i \in [1, n], \forall t \in I, \alpha'_i(t) = a(t).\alpha_i(t)$$

Donc

$$\forall t \in I, W'(t) = \sum_{j=1}^{n} \det_{\mathfrak{B}_{0}} (\alpha_{1}(t), \alpha_{2}(t) ... a(t) .\alpha_{j}(t), ... \alpha_{n}(t))$$

$$= \operatorname{Tr}(a(t)) \det_{\mathfrak{B}_{0}} (\alpha_{1}(t), \alpha_{2}(t) ... \alpha_{n}(t)) = \operatorname{Tr}(a(t)) W(t)$$

Donc W est solution de l'équation différentielle W'(t) = Tr(a(t)).W(t), d'où son expression.

C) Méthode de variation des *n* constantes

Problème :

On suppose résolue (e): x'(t) = a(t).x(t) et on veut résoudre

(E): x'(t) = a(t).x(t) + b(t) dans E de dimension n,

C'est-à-dire qu'on connaît un système fondamental de solution de (e) $(\varphi_1,...\varphi_n)$.

• Lemme:

Pour toute function $\psi: I \to E$, il existe un unique *n*-uplet $(\lambda_1, ... \lambda_n)$ de fonctions

scalaires
$$\lambda_i: I \to \mathbb{K}$$
 telles que $\forall t \in I, \psi(t) = \sum_{j=1}^n \lambda_j(t) \varphi_j(t)$

De plus, ψ est de classe C^1 si et seulement si toutes les λ_i le sont.

Démonstration:

Comme $(\varphi_1,...\varphi_n)$ est un système fondamental de solutions de (e), pour tout $t \in I$, $(\varphi_1(t),...\varphi_n(t)) = (\theta_t(\varphi_1),...\theta_t(\varphi_n))$ est une base de E.

Donc $\psi(t)$ se décompose de manière unique en $\psi(t) = \sum_{j=1}^{n} \lambda_{j}(t) \varphi_{j}(t)$

Caractérisation C^1 :

Si les λ_i sont de classe C^1 , ψ l'est aussi.

Réciproquement, supposons que ψ est de classe C^1 .

Soit \mathfrak{B}_0 une base de E. On a, pour tout $j \in [1, n]$:

$$\det_{\mathfrak{B}_{0}}(\varphi_{1}(t),...\varphi_{j-1}(t),\psi(t),\varphi_{j+1}(t),...\varphi_{n}(t)) = \lambda_{j}(t)\det_{\mathfrak{B}_{0}}(\varphi_{1}(t),...\varphi_{n}(t))$$

$$= \lambda_{j}(t)\underbrace{W_{(\varphi_{1},...\varphi_{n}),\mathfrak{B}_{0}}(t)}_{\neq 0}$$

$$\text{Donc } \lambda_j(t) = \frac{\det_{\mathfrak{B}_0} \left(\varphi_1(t), \ldots \varphi_{j-1}(t), \psi(t), \varphi_{j+1}(t), \ldots \varphi_n(t) \right)}{W_{(\varphi_1, \ldots \varphi_n), \mathfrak{B}_0}(t)}, \text{ donc } \lambda_j \text{ est de classe } C^1.$$

• Méthode de variation des *n* constantes :

Théorème:

Sous les hypothèses précédentes,

Pour
$$x: I \to E$$
 de classe C^1 , on pose $x(t) = \sum_{j=1}^n \lambda_j(t) \varphi_j(t)$.

Alors les λ_i sont de classe C^1 , et x est solution de (E) si et seulement si

$$\forall t \in I, \sum_{j=1}^{n} \lambda'_{j}(t) \varphi_{j}(t) = b(t)$$
, c'est-à-dire si et seulement si

$$\forall t \in I, \forall j \in \left[\left[1, n \right] \right], \lambda'_{j}(t) = \frac{\det_{\mathfrak{B}_{0}} (\varphi_{1}(t), \dots \varphi_{j-1}(t), b(t), \varphi_{j+1}(t), \dots \varphi_{n}(t))}{W_{(\varphi_{1}, \dots \varphi_{n}), \mathfrak{B}_{0}}(t)}$$

Démonstration:

Comme x et les λ_j , φ_j sont de classe C^1 , on a :

$$\forall t \in I, x'(t) = \sum_{j=1}^{n} \lambda'_{j}(t)\varphi_{j}(t) + \sum_{j=1}^{n} \lambda_{j}(t)\varphi'_{j}(t)$$

$$= \sum_{j=1}^{n} \lambda'_{j}(t)\varphi_{j}(t) + \sum_{j=1}^{n} \lambda_{j}(t)a(t).\varphi_{j}(t)$$

$$= \sum_{j=1}^{n} \lambda'_{j}(t)\varphi_{j}(t) + a(t).x(t)$$

Donc x est solution de (E) si et seulement si $\forall t \in I, \sum_{j=1}^{n} \lambda_{j}^{t}(t) \varphi_{j}(t) = b(t)$.

D) Remarque : autre interprétation de la méthode de variation des *n* constantes

Soit $t_0 \in I$, $(\varphi_1,...\varphi_n)$ un système fondamental de solutions de (E).

On note $\mathfrak{B}_0 = (\varphi_1(t_0), ..., \varphi_n(t_0))$, base de E.

Et on note $M(t) = \max_{\mathfrak{B}_0} (\varphi_1(t), ..., \varphi_n(t)), A(t) = \max_{\mathfrak{B}_0} (a(t)).$

Alors M est de classe C^1 , et :

$$\forall t \in I, M'(t) = \max_{\mathfrak{D}_0} (\varphi'_1(t), ..., \varphi'_n(t))$$
$$= \max_{\mathfrak{D}_0} (a(t).\varphi_1(t), ..., a(t).\varphi_n(t))$$
$$= A(t) \times M(t)$$

Et $M(t_0) = I_n$

Donc M est solution du problème de Cauchy $\begin{cases} M'(t) = A(t) \times M(t) \\ M(t_0) = I_n \end{cases}$

Si maintenant E est un espace de Banach quelconque :

On considère le problème de Cauchy dans $L_c(E)$:

$$(*)\begin{cases} \forall t \in I, m'(t) = a(t) \circ m(t) \\ m(t_0) = \operatorname{Id}_E \end{cases}$$

Peut-on appliquer le théorème de Cauchy?

Déjà, E est complet.

Pour tout $t \in I$, $A(t): L_C(E) \to L_C(E)$ est un endomorphisme continu de $L_C(E)$ $f \mapsto a(t) \circ f$

Et
$$t \in I \mapsto A(t) \in L_c(L_c(E))$$
 est continu $(|||A(t) - A(s)||| \le ||a(t) - a(s)||)$

Donc (*) a une unique solution $m: I \to L_C(E)$ telle que $m(t_0) = \operatorname{Id}_E$

Définition (Hors programme):

m s'appelle la résolvante de (e).

NB: pour tout $t \in I$, m(t) est un automorphisme continu de E.

En effet, il est déjà continu.

Soit de plus $t_1 \in I$. On note m_2 la solution du problème de Cauchy

$$\begin{cases} \forall t \in I, u'(t) = a(t) \circ u(t) \\ u(t_1) = \operatorname{Id}_{\scriptscriptstyle F} \end{cases}$$

Alors pour tout $t \in I$, $m_2(t) \circ m(t_1) = m(t)$.

En effet, l'application $f: t \mapsto m_2(t) \circ m(t_1)$ (à valeurs dans $L_C(E)$) est de classe C^1 et vérifie :

$$\forall t \in I, f'(t) = m'_{2}(t) \circ m(t_{1}) = a(t) \circ m_{2}(t) \circ m(t_{1}) = a(t) \circ f(t)$$

Et
$$f(t_1) = \text{Id}_E \circ m(t_1) = m(t_1)$$

Donc
$$g = f - m$$
 est solution de
$$\begin{cases} \forall t \in I, g'(t) = a(t) \circ g(t) \\ g(t_1) = 0_{L(E)} \end{cases}$$

Dont une autre solution est la solution qui à t associe l'endomorphisme nul.

Et par unicité de la solution, on a g = 0, et donc f = m

Donc $\forall t \in I, m_2(t) \circ m(t_1) = m(t)$, puis en prenant $t = t_0, m_2(t_0) \circ m(t_1) = \operatorname{Id}_E$

Donc $m(t_1)$ est inversible à gauche.

On a ensuite de la même façon $\forall t \in I, m(t) \circ m_2(t_0) = m_2(t)$

Et donc en t_1 : $m(t_1) \circ m_2(t_0) = \operatorname{Id}_E$

D'où on tire que $m(t_1)$ est bien un automorphisme de E.

Variation de la constante :

On veut résoudre le problème de Cauchy $\begin{cases} (E)x'(t) = a(t).x(t) + b(t) \\ x(t_0) = x_0 \end{cases}$

Pour $\lambda: I \to E$ de classe C^1 , on pose $x(t) = m(t) \cdot \lambda(t)$ où m est la résolvante de

(E). Ainsi, $x: I \to E$ est de classe C^1 , et:

$$\forall t \in I, x'(t) = m'(t).\lambda(t) + m(t).\lambda'(t)$$
$$= (a(t) \circ m(t)).\lambda(t) + m(t).\lambda'(t)$$
$$= a(t).x(t) + m(t).\lambda'(t)$$

Donc *x* est solution de (*E*) si et seulement si $\forall t \in I, m(t).\lambda'(t) = b(t)$

C'est-à-dire $\forall t \in I, \lambda'(t) = (m(t))^{-1} b(t)$

Ou
$$\lambda(t) = \int (m(t))^{-1} b(t) dt$$

Et donc la solution du problème de Cauchy est $x(t) = m(t) \cdot \left(x_0 + \int_{t_0}^t (m(s))^{-1} b(s) ds\right)$

E) Equations à coefficients constants

Problème:

On cherche à résoudre (e): x'(t) = A.x(t) où $x: I \to M_{n,1}(\mathbb{K})$ et $A \in M_n(\mathbb{K})$

(E): x'(t) = A.x(t) + B(t) où $B: I \to M_{n,1}(\mathbb{K})$ est continu

Ou (e): x'(t) = a(x(t)) où a est un endomorphisme fixé d'un espace de Banach E.

(E): x'(t) = a(x(t)) + b(t) où $b: I \to E$ est continu.

Révisions d'algèbre linéaire :

- Méthode de résolution de X' = AX où A est une matrice constante.
- (1) Si A est diagonalisable :

On note $(\vec{V}_1,...\vec{V}_n)$ une base de vecteurs colonnes propres, \vec{V}_i associé à λ_i . Pour une condition initiale (t_0,\vec{x}_0) , si on note $\vec{x}_0 = \sum_{i=1}^n a_i \vec{V}_i$, la solution du problème de

Cauchy
$$\begin{cases} X' = AX \\ X(t_0) = \vec{x}_0 \end{cases}$$
 est alors $X(t) = \sum_{j=1}^n a_j e^{\lambda_j (t - t_0)} \vec{V}_j$

Démonstration : il suffit de vérifier que la solution proposée convient...

(2) Utilisation de l'exponentielle :

Théorème:

La solution du problème de Cauchy $\begin{cases} X' = AX \\ X(t_0) = \vec{x}_0 \end{cases} \text{ est } X(t) = e^{(t-t_0)A} \vec{x}_0$

Démonstration:

 $t \in \mathbb{R} \mapsto e^{t.A}$ est de classe C^1 de dérivée $t \mapsto A.e^{t.A}$

Donc $\varphi: t \mapsto e^{(t-t_0).A}.\vec{x}_0$ est de classe C^1 , de dérivée $\varphi'(t) = Ae^{(t-t_0).A}.\vec{x}_0 = AX(t)$

Comme de plus $\varphi(t_0) = \vec{x}_0$, φ est la solution cherchée.

Remarque:

La résolvante de l'équation X' = AX est la solution du problème de Cauchy $\begin{cases} M'(t) = A.M(t) \\ M(t_0) = I_n \end{cases}$, c'est-à-dire $t \mapsto e^{(t-t_0).A}$.

Autrement dit, les vecteurs—colonnes de e^{tA} forment un système fondamental de solution de X' = AX

(3) Résolution par réduction :

Si on peut écrire $A = PRP^{-1}$ où $P \in GL_n(\mathbb{K})$, alors $X : t \mapsto X(t)$ est solution de X' = AX si et seulement si $Y : t \mapsto P^{-1}X(t)$ est solution de Y' = RY.

Par exemple, si
$$R = \begin{pmatrix} a_{1,1} & * \\ & \ddots & \\ & & a_{n,n} \end{pmatrix}$$
, l'équation $Y' = RY$ s'écrit alors

$$\begin{cases} y'_1 = a_{1,1}y_1 + \dots + a_{1,n}y_n \\ \vdots & \text{Où } Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \\ y'_n = a_{n,n}y_n \end{cases}$$

On résout alors le système en cascade en commençant par la dernière.

(4) Cas où $A \in M_n(\mathbb{R})$ non trigonalisable sur \mathbb{R} .

On réduit A sur \mathbb{C} :

Si A est diagonalisable (dans \mathbb{C}):

Si $\lambda \in \mathbb{C} \setminus \mathbb{R}$ est valeur propre de A, alors $\overline{\lambda}$ aussi.

Dans la diagonalisation de A, si on prend $(V_1(\lambda),...V_p(\lambda)) \in M_{n,1}(\mathbb{C})^p$ comme base de $E_{\lambda}(A)$, il faut prendre $(\overline{V_1}(\lambda),...\overline{V_p}(\lambda))$ comme base de $E_{\overline{\lambda}}(A)$.

Exemple:

Si $A \in M_3(\mathbb{R})$ a pour valeurs propres $\alpha \in \mathbb{R}$, $\beta, \overline{\beta} \in \mathbb{C} \setminus \mathbb{R}$.

On note \vec{v}_1 un vecteur propre associé à α , \vec{v}_2 associé à β et $\vec{v}_3 = \overline{\vec{v}_2}$ associé à $\overline{\beta}$.

La solution générale de X' = AX complexe est $X(t) = ae^{\alpha t}\vec{v}_1 + be^{\beta t}\vec{v}_2 + ce^{\beta t}\vec{v}_3$ où a, b, c sont complexes.

X est une solution réelle si et seulement si $\forall t \in \mathbb{R}, X(t) = \overline{X}(t)$

Ce qui, du fait que
$$\{t \mapsto e^{\lambda t}, \lambda \in \mathbb{C}\}$$
 est libre, revient à $\begin{cases} a \in \mathbb{R} \\ c = \overline{b} \end{cases}$

La solution réelle générale de X' = AX s'écrit donc

$$X(t) = ae^{\alpha t} \vec{v}_1 + be^{\beta t} \vec{v}_2 + \overline{b} e^{\overline{\beta} t} \overline{\vec{v}_2} \text{ où } a \in \mathbb{R} \text{ et } b \in \mathbb{C}.$$

• Equation d'ordre *r* :

$$X^{(r)}(t) = A_{r-1}X^{(r-1)}(t) + ... + A_0X(t)$$

Où
$$\forall j \in [0, r-1], A_j \in M_n(\mathbb{K})$$
 et $X: t \mapsto X(t) \in M_{n,1}(\mathbb{K})$ est de classe C^r

Par exemple, avec r = 2: $(E_2): X''(t) = A_1X'(t) + A_0X(t)$

Equation d'ordre 1 associée :

On pose
$$Y = \begin{pmatrix} X \\ X' \end{pmatrix}$$
.

Alors X est solution de (E_2) si et seulement si $Y' = \begin{pmatrix} 0 & I_n \\ A_0 & A_1 \end{pmatrix} Y$

On est alors ramené au problème précédent.

Cas usuel:

$$x^{(r)}(t) = \sum_{j=0}^{r-1} a_j x^{(j)}(t)$$
 où $\forall j \in [1, r-1], a_j \in \mathbb{K}$

L'équation d'ordre 1 associée est
$$Y'=MY$$
 où $M=\begin{pmatrix} 0 & 1 & (0) \\ \vdots & \ddots & \ddots \\ 0 & \cdots & 0 & 1 \\ a_0 & \cdots & \cdots & a_{r-1} \end{pmatrix} \in M_r(\mathbb{K})$

NB:

M est un matrice compagnon, donc est diagonalisable si et seulement si χ_M est scindé à racines simples c'est-à-dire si et seulement si $\forall \lambda \in \mathbb{K}, \operatorname{rg}(M - \lambda I_r) \geq r - 1$.

• Méthode par l'équation caractéristique pour une équation scalaire (E_r) .

$$(E_r): x^{(r)}(t) = \sum_{j=0}^{r-1} a_j x^{(j)}(t)$$

L'application $t \mapsto e^{\lambda t}$ est solution de (E_r) si et seulement si

$$\lambda^r = \sum_{j=0}^{r-1} a_j \lambda^j$$
 (équation caractéristique)

On suppose que $X^r - \sum_{j=0}^{r-1} a_j X^j$ est scindé sur \mathbb{K} .

Ainsi, on peut écrire
$$X^r - \sum_{j=0}^{r-1} a_j X^j = \prod_{i=1}^p (X - \lambda_i)^{m_i}$$
 où les λ_i sont distincts.

Théorème:

$$\{t \mapsto t^k e^{\lambda_i t}, i \in [1, p], 0 \le k \le m_i - 1\}$$
 est une base de solutions de (E_r) .

Démonstration:

Déjà, la famille est libre.

L'ensemble des solutions de (E_r) est un \mathbb{K} -ev de dimension r.

Reste à montrer que tous les éléments sont bien solutions :

Il faut montrer que si λ est racine d'ordre m de l'équation caractéristique, et $0 \le k \le m-1$, alors $t \mapsto t^k e^{\lambda t}$ est solution de (E_r)

Si
$$\lambda = 0$$
, alors $a_0 = a_1 = ... = a_{m-1} = 0$

Donc l'équation s'écrit
$$(E_r)$$
: $x^{(r)} = a_m x^{(m)} + ... + a_{r-1} x^{(r-1)}$

Et pour tout $k \le m-1$, $t \mapsto t^k$ est bien solution (les deux membres de l'équation sont nuls)

Si
$$\lambda \neq 0$$
:

On pose
$$v(t) = e^{-\lambda t} x(t)$$
.

Alors la formule de Leibniz donne $\forall j \in [1, r-1], \forall t \in I, x^{(j)}(t) = e^{\lambda t} \left(\sum_{l=0}^{j} C_j^l \lambda^l y^{(j-l)} \right)$

Donc x est solution de (E_r) si et seulement si y est solution de (E'_r) : $y^{(r)} = \sum_{j=0}^{r-1} b_j y^{(j)}$ où les b_j s'expriment en fonction de λ et des a_j .

Une condition nécessaire et suffisante pour que $t \mapsto e^{\mu t}$ soit solution de (E'_r) est que $t \mapsto e^{(\lambda + \mu)t}$ soit solution de (E_r) , c'est-à-dire que $P(\lambda + \mu) = 0$ où P est l'équation caractéristique de (E_r) .

Or, 0 est racine d'ordre m de $P(\lambda + X)$, équation caractéristique de (E'_r) .

Donc $t \mapsto t^k$ est solution de (E'_r) pour tout $k \in [0, m-1]$.

Donc $t \mapsto t^k e^{\lambda t}$ est solution de (E_r) pour tout $k \in [0, m-1]$

• Variation des constantes pour résoudre X'(t) = AX(t) + B(t) où $A \in M_n(\mathbb{K})$. Méthode 1 :

On résout X' = AX, et on prend un système fondamental de solutions $t \mapsto x_j(t)$ ($j \in [1, n]$)

Si par exemple A est diagonalisable, on prend $(V_1,...V_n)$ une base de vecteurs propres, les V_i associés aux valeurs propres λ_i . Ainsi, $x_i:t\mapsto e^{\lambda_i t}V_i$ convient.

Pour résoudre X'(t) = AX(t) + B(t), on pose alors $X(t) = \sum_{j=1}^{n} k_j(t)x_j(t)$ où

 $k_j: I \to \mathbb{C}$. Ainsi, X est de classe C^1 si et seulement si les k_j le sont. Et X est solution de X'(t) = AX(t) + B(t) si et seulement si

$$\forall t \in I, \sum_{j=1}^{n} k'_{j}(t) x_{j}(t) = B(t)$$

On a un système de Cramer en les k'_j , qu'on peut résoudre.

Méthode 2:

On pose $X(t) = \exp(t.A).Y(t)$

Alors $X'(t) = AX(t) + B(t) \Leftrightarrow Y'(t) = \exp(-t.A).B(t)$

F) Equations scalaires d'ordre 2 à coefficients variables

On considère l'équation résolue (E): x''(t) = a(t)x(t) + b(t)x'(t) + c(t)

Où $a,b,c:I \to \mathbb{K}$ sont continues.

On note (e): x''(t) = a(t)x(t) + b(t)x'(t)

L'équation d'ordre 1 associée est (F): $y'(t) = \begin{pmatrix} 0 & 1 \\ a(t) & b(t) \end{pmatrix} y(t) + \begin{pmatrix} 0 \\ c(t) \end{pmatrix}$

• Théorème de Cauchy.

Théorème:

Pour toute condition initiale (t_0, x_0, x_1) , le problème de Cauchy $\begin{cases} (E) \\ x(t_0) = x_0 \text{ a une} \\ x'(t_0) = x_1 \end{cases}$

unique solution.

Démonstration:

Il suffit d'appliquer le théorème de Cauchy à (F).

Corollaire:

L'ensemble $S_{(E)}$ des solutions de (E) est un espace affine de dimension 2 de direction l'ensemble des solutions $S_{(e)}$ de (e), espace vectoriel de dimension 2. Pour tout $t_0 \in I$, $S_{(E)} \to \mathbb{K}^2$ est une bijection affine, et $S_{(e)} \to \mathbb{K}^2$ un $\varphi \mapsto (\varphi(t_0), \varphi'(t_0))$ isomorphisme de \mathbb{K} -ev.

• Système fondamental de solutions de (e), Wronskien :

Définition:

On appelle système fondamental de solutions de (e) toute base de $S_{(e)}$.

Théorème:

 (x_1, x_2) est un système fondamental de solutions de (e): x''(t) = a(t)x(t) + b(t)x'(t)

si et seulement si $y_1 = \begin{pmatrix} x_1 \\ x'_1 \end{pmatrix}$ et $y_2 = \begin{pmatrix} x_2 \\ x'_2 \end{pmatrix}$ constituent un système fondamental de

solutions de
$$y'(t) = \begin{pmatrix} 0 & 1 \\ a(t) & b(t) \end{pmatrix} y(t)$$
.

Définition:

On appelle Wronskien d'un couple de solutions (x_1, x_2) de (e) l'application W définie par $\forall t \in I, W(t) = \det \begin{pmatrix} x_1(t) & x_2(t) \\ x_1'(t) & x_2'(t) \end{pmatrix}$, c'est-à-dire le Wronskien de (y_1, y_2) dans

la base canonique de \mathbb{R}^2 , où $y_j = \begin{pmatrix} x_j \\ x_j' \end{pmatrix}$.

Théorème:

Soient x_1, x_2 deux solutions de (e). Les conditions suivantes sont équivalentes :

- (1) (x_1, x_2) est un système fondamental de solution de (e).
- (2) Le Wronskien $x_1x'_2-x_2x'_1$ ne s'annule pas
- (3) Le Wronskien $x_1x'_2-x_2x'_1$ n'est pas la fonction nulle.

Démonstration:

On revient à $(f): y'(t) = \begin{pmatrix} 0 & 1 \\ a(t) & b(t) \end{pmatrix} y(t)$ et on applique les théorèmes correspondants.

Exercice:

Soient x_1, x_2 deux solutions de (e): x''(t) = a(t)x(t) + b(t)x'(t).

On pose $W = x_1 x_2' - x_2 x_1'$. Montrer que $\forall t \in I, W'(t) = b(t)W(t)$.

Démonstration:

On peut encore se ramener à (f), ou :

$$W' = x_1 x_2'' + x_1' x_2' - x_2 x_1'' - x_1' x_2'$$

$$= x_1 (ax_2 + bx_2') - x_2 (ax_1 + bx_1')$$

$$= b \times W$$

• Peut-on résoudre une équation de la forme x''(t) = a(t)x(t) + b(t)x'(t) à l'aide de primitives ?

Réponse : en général, non (Liouville)

Cas qu'on sait résoudre (et à savoir résoudre!) :

- Si les coefficients sont constants
- Equation d'Euler : (E): $t^2x''(t) = \alpha t \cdot x'(t) + \beta \cdot x(t)$ où α, β sont des constantes.

On l'écrit
$$x''(t) = \alpha \cdot \frac{x'(t)}{t} + \beta \cdot \frac{x(t)}{t^2}$$
 sur *I* ne contenant pas 0.

Propriété (Hors programme):

Pour $r \in \mathbb{C}$, l'application $t \in I \mapsto |t|^r = e^{r\ln|t|}$ est solution de (E) si et seulement si $r.(r-1) = \alpha . r + \beta$ (*).

Si (*) a deux racines r_1, r_2 distinctes, alors $(t \mapsto |t|^{r_1}, t \mapsto |t|^{r_2})$ est un système fondamental de solutions de l'équation.

Si (*) a une racine double r_0 , alors $(t\mapsto |t|^{r_0},t\mapsto |t|^{r_0}\ln|t|)$ est un système fondamental de solution de l'équation.

Démonstration:

Il n'y a qu'à vérifier...

- On peut chercher des solutions développables en séries entières.
- Méthode de variation des deux constantes :

On suppose que (x_1, x_2) est un système fondamental de solutions de

(e):
$$x''(t) = a(t).x(t) + b(t).x'(t)$$
,

et on veut résoudre (E): x''(t) = a(t).x(t) + b(t).x'(t) + c(t)

Méthode:

Pour
$$x: I \to \mathbb{K}$$
, on pose $\binom{x(t)}{x'(t)} = \lambda(t) \binom{x_1(t)}{x_1'(t)} + \mu(t) \binom{x_2(t)}{x_2'(t)}$.

C'est-à-dire
$$\begin{cases} x(t) = \lambda(t)x_1(t) + \mu(t)x_2(t) & (1) \\ x'(t) = \lambda(t)x_1'(t) + \mu(t)x_2'(t) & (2) \end{cases}$$

Lemme:

x est de classe C^2 si et seulement si λ et μ sont de classe C^1 .

Démonstration:

Le sens \Leftarrow est clair (avec (2)). Pour l'autre :

On remarque que le système d'équations $\begin{cases} (1) \\ (2) \end{cases}$ d'inconnues λ, μ a pour

déterminant le Wronskien $W = x_1x_2' - x_2x_1'$, qui ne s'annule pas. Donc en résolvant le

système,
$$\lambda = \frac{\begin{vmatrix} x & x_2 \\ x' & x_2 \end{vmatrix}}{W}$$
. Donc λ est de classe C^1 et de même pour $\mu = \frac{\begin{vmatrix} x_1 & x \\ x_1' & x' \end{vmatrix}}{W}$

Maintenant:

En dérivant (1), on a $x' = \lambda' x_1 + \mu' x_2 + \lambda x_1' + \mu x_2'$

Et avec (2), on obtient $\lambda' x_1 + \mu' x_2 = 0$ (3)

En dérivant (2), on a $x'' = \lambda' x_1' + \mu' x_2' + \lambda x_1'' + \mu x_2''$

Et (E) devient: $\lambda' x_1' + \mu' x_2' + \lambda x_1'' + \mu x_2'' = a.(\lambda x_1 + \mu x_2) + b.(\lambda x_1' + \mu x_2') + c$

Et donc sachant que x_1 et x_2 sont solutions de (e): $\lambda' x_1' + \mu' x_2' = c$ (4)

Le système constitué de (3) et (4) est de Cramer en les inconnues λ' , μ' et de déterminant $W = x_1x_2' - x_1x_1'$ ne s'annulant pas.

Donc
$$\lambda' = \frac{\begin{vmatrix} 0 & x_2 \\ c & x_2 \end{vmatrix}}{W}$$
 et $\mu' = \frac{\begin{vmatrix} x_1 & 0 \\ x_1' & c \end{vmatrix}}{W}$.

Puis après calcul de primitives, on obtient une solution x de (E).

Remarque:

On a simplement appliqué la méthode de variation des constantes à (f) dont $\begin{pmatrix} x_1 \\ x_1' \end{pmatrix}$

et $\begin{pmatrix} x_2 \\ x_2 \end{pmatrix}$ forment un système fondamental de solutions.

Exemple:

Résoudre $x^2y''(x) + 4x \cdot y'(x) + 2y(x) = \ln(1-x)$

Domaine d'étude : $-\infty,1$

Sur $I =]-\infty,0[$ ou]0;1[, l'équation est résolue et on peut appliquer le théorème de Cauchy.

On considère $(e): x^2y''(x) + 4x.y'(x) + 2y(x) = 0$

Alors $x \mapsto |x|^r$ est solution si et seulement si r(r-1) + 4r + 2 = 0 c'est-à-dire si et seulement si r = -1 ou -2.

Donc, sur *I*, la solution générale de (*e*) est $y(x) = \frac{\lambda}{x} + \frac{\mu}{x^2}$.

Variation des constantes :

On pose
$$\begin{pmatrix} y(x) \\ y'(x) \end{pmatrix} = \lambda(x) \begin{pmatrix} \frac{1}{x} \\ -\frac{1}{x^2} \end{pmatrix} + \mu(x) \begin{pmatrix} \frac{1}{x^2} \\ -\frac{2}{x^3} \end{pmatrix}$$

On obtient alors
$$\begin{cases} \lambda'(x) \times \frac{1}{x} + \mu'(x) \frac{1}{x^2} = 0\\ \lambda'(x) \times \frac{-1}{x^2} + \mu'(x) \frac{-2}{x^3} = \frac{\ln(1-x)}{x^2} \end{cases}$$

Qui est équivalent à $\begin{cases} \mu'(x) = -x \cdot \lambda'(x) \\ \lambda'(x) = \ln(1-x) \end{cases}$

• Variation d'une seule constante :

Si on connaît une solution non nulle x_1 de (e): x''(t) = a(t)x(t) + b(t)x'(t),

Alors sur tout intervalle J où x_1 ne s'annule pas, pour résoudre (e) ou (E) on peut poser $x(t) = y(t)x_1(t)$.

(NB : x est de classe C^2 si et seulement si y l'est)

Et x est solution de (E) si et seulement si y vérifie

$$y''x_1 + 2y'x_1' + y.x_1'' = a.y.x_1 + b.(y'x_1 + y.x_1') + c$$

C'est-à-dire
$$(E')$$
: $y''(t).x_1(t) = y'(t).(b(t).x_1(t) - 2x_1'(t)) + c(t)$

Qui est une équation du premier ordre en y'.

• Changement d'inconnue, changement de variable dans les équations différentielles d'ordre 2 :

Problème:

On veut résoudre (E): y''(x) = a(x)y'(x) + b(x)y(x) + c(x)

- Changement d'inconnue:

Si par exemple on sait que y_0 est solution de (e): y''(x) = a(x)y'(x) + b(x)y(x) et que y_0 ne s'annule pas, en faisant le changement d'inconnue $y = z.y_0$ on obtient une équation différentielle d'ordre 2 en z telle que z = 1 soit solution de l'équation sans second membre, c'est-à-dire une équation d'ordre 1 en z'.

- Changement de variable :

On pose y(x) = z(t) où $t = \varphi(x)$, φ étant un C^2 -difféomorphisme.

Remarque : on est obligé en même temps de faire un changement d'inconnue.

Exemple:

Résoudre
$$y'' + \frac{A}{x^2}y = 0$$
 en posant $t = \ln x$ et $z(t) = \frac{y(x)}{\sqrt{x}}$

Sur $]0,+\infty[$, $x\mapsto \sqrt{x}$ est de classe C^{∞} , et $x\in]0,+\infty[\mapsto \ln x\in\mathbb{R}$ est un C^{∞} -difféomorphisme.

Donc y est de classe C^2 sur $]0,+\infty[$ si et seulement si z est de classe C^2 sur \mathbb{R} .

Et
$$y'(x) = \frac{1}{2\sqrt{x}} z(\ln x) + \frac{1}{\sqrt{x}} z'(\ln x)$$
,

$$y''(x) = \frac{-1}{4}x^{-3/2}z(\ln x) + z'(\ln x)\left(\frac{1}{2}x^{-3/2} - \frac{1}{2}x^{-3/2}\right) + x^{-3/2}z''(\ln x)$$

Ainsi, y est solution de (E) si et seulement si

$$\forall x > 0, \frac{-1}{4} x^{-3/2} z(\ln x) + x^{-3/2} z''(\ln x) + \frac{A}{x^{3/2}} z(\ln x) = 0$$

C'est-à-dire si et seulement si

$$\forall t \in \mathbb{R}, z''(t) + (A - \frac{1}{4})z(t) = 0$$

Si par exemple
$$A - \frac{1}{4} > 0$$
, on a alors $z(t) = \alpha \cos \omega t + \beta \sin \omega t$ où $\omega = \sqrt{A - \frac{1}{4}}$

Puis
$$\forall x > 0, y(x) = \sqrt{x} (\alpha \cos(\omega \ln x) + \beta \sin(\omega \ln x))$$