

Chapitre 17 : Intégrales dépendant d'un paramètre

On va s'intéresser aux problèmes :

Du calcul de $\lim_{n\to+\infty} \int_I f_n(t) dt$

Et
$$\sum_{n=0}^{+\infty} \int_{I} u_{n}(t) dt$$

Ou encore une étude de fonctions de la forme $F: x \mapsto \int_I f(x,t)dt$, c'est-à-dire la continuité, dérivabilité...

Exemples:

La transformée de Fourier pour $f \in L_1(\mathbb{R})$: $\widetilde{f}(x) = \int_{\mathbb{R}} e^{-it.x} f(t) dt$

La transformée de Laplace de $f: \mathbb{R}_+ \to \mathbb{C}$ intégrable continue par morceaux :

$$L(f)(s) = \int_0^{+\infty} e^{-s.t} f(t) dt$$

I Préliminaire : fonction gamma

A) Définition

Théorème (hors programme dans $\mathbb{C} \setminus \mathbb{R}$):

Pour $s \in \mathbb{C}$, $t \mapsto e^{-t}t^{s-1}$ est continue sur $]0,+\infty[$, et intégrable sur $]0,+\infty[$ si et seulement si Re(s) > 0.

On pose alors $\Gamma(s) = \int_0^{+\infty} e^{-t} t^{s-1} dt$ pour $\operatorname{Re}(s) > 0$.

Equation fonctionnelle:

Pour Re(s) > 0, $\Gamma(s+1) = s\Gamma(s)$

Pour $n \in \mathbb{N}^*$, $\Gamma(n) = (n-1)!$

Démonstration:

(1) déjà, $f: t \mapsto e^{-t}t^{s-1}$ est continue sur $]0,+\infty[$.

Etude en 0:

On a
$$|f(t)| \sim |t^{s-1}| = t^{\text{Re}(s)-1}$$

Donc f est intégrable sur]0;1] si et seulement si Re(s) > 0

Etude en $+\infty$:

On a $\lim_{t \to +\infty} t^2 f(t) = 0$, donc f est intégrable sur $[1, +\infty[$.

(2) Si $\operatorname{Re}(s) > 0$, alors $\operatorname{Re}(s+1) > 0$ et pour x > 0, $0 < \varepsilon < x$ on a :

$$\int_{\varepsilon}^{x} e^{-t} t^{s} dt = \left[-e^{-t} t^{s} \right]_{\varepsilon}^{x} + s \int_{\varepsilon}^{x} e^{-t} t^{s-1} dt$$

Mais $\lim_{\varepsilon \to 0} e^{-\varepsilon} \varepsilon^s = 0$ car $\operatorname{Re}(s) > 0$, et $\lim_{x \to +\infty} e^{-x} x^s = 0$.

Donc $\Gamma(s+1) = s\Gamma(s)$.

Pour
$$n \in \mathbb{N}^*$$
, $\Gamma(n+1) = n\Gamma(n) = n!\Gamma(1)$
Et $\Gamma(1) = \int_0^{+\infty} e^{-t} dt = 1$

B) Exercice

 Γ est convexe sur \mathbb{R}_{+}^{*} .

En effet:

Soient x, y > 0, $u \in [0;1]$.

Alors pour tout t > 0, on a:

$$t^{ux+(1-u)y-1} = e^{(ux+(1-u)y-1)\ln t} \le ue^{(x-1)\ln t} + (1-u)e^{(y-1)\ln t}$$

Car $f: x \mapsto e^{(x-1)a}$ est convexe sur \mathbb{R}_+^* pour tout $a \in \mathbb{R}$ (puisque $f'' \ge 0$)

Donc
$$\int_0^{+\infty} e^{-t} t^{ux+(1-u)y-1} dt \le u \int_0^{+\infty} e^{-t} t^{x-1} dt + (1-u) \int_0^{+\infty} e^{-t} t^{y-1} dt$$

C'est-à-dire $\Gamma(ux + (1-u)y) \le u\Gamma(x) + (1-u)\Gamma(y)$

Remarque:

 Γ est même logarithmiquement convexe, c'est-à-dire que $\ln \Gamma$ est convexe.

(C'est un résultat plus fort : on peut montrer que si une fonction est logarithmiquement convexe, alors elle est convexe)

En effet, il s'agit de montrer que

$$\forall x, y > 0, \forall u \in [0,1], \Gamma(ux + (1-u)y) \leq \Gamma(x)^u \Gamma(y)^{1-u}$$

Ce qui découle de l'inégalité de Hölder : pour $u \in]0;1[$

$$\int_{0}^{+\infty} \underbrace{(e^{-t}t^{x-1})^{u}}_{f(t)} \underbrace{(e^{-t}t^{y-1})^{1-u}}_{g(t)} dt \le \|f\|_{p} \|g\|_{q} \le \left(\int_{0}^{+\infty} e^{-t}t^{x-1} dt\right)^{1/p} \left(\int_{0}^{+\infty} e^{-t}t^{y-1} dt\right)^{1/q}$$

Où
$$p = \frac{1}{u} > 0$$
, $q = \frac{1}{1 - u} > 0$ et $\frac{1}{p} + \frac{1}{q} = 1$

Inégalité de Hölder:

Soient f, g deux fonctions définies sur I à valeurs dans \mathbb{R}_+ , et soient p et q deux réels conjugués (c'est-à-dire strictement positifs et tels que $\frac{1}{p} + \frac{1}{q} = 1$). On suppose que

$$f^p$$
 et g^q sont intégrables sur I . Alors $\int_I fg \le \left(\int_I f^p\right)^{1/p} \left(\int_I g^q\right)^{1/q}$

Démonstration:

Lemme:

Pour $\alpha \in]0;1[$ et $u,v \in \mathbb{R}_+$, on a $u^{\alpha}v^{1-\alpha} \le \alpha.u + (1-\alpha).v$

En effet, il suffit d'utiliser la concavité de ln.

Posons maintenant
$$F = \left(\int_{I} f^{p} \right)^{1/p}$$
 et $G = \left(\int_{I} g^{q} \right)^{1/q}$.

Si F ou G est nul, l'inégalité est claire (f et g sont positives). Sinon :

Posons
$$u = \left(\frac{f}{F}\right)^p$$
, $g = \left(\frac{g}{G}\right)^q$, et $\alpha = \frac{1}{p}$. On a alors $1 - \alpha = \frac{1}{q}$, et en appliquant le

lemme, on a pour tout
$$x \in I$$
: $\frac{f(x)g(x)}{FG} \le \frac{1}{p} \frac{f(x)^p}{F^p} + \frac{1}{q} \frac{g(x)^q}{G^q} = \frac{1}{p} u(x) + \frac{1}{q} v(x)$

Mais u et v sont intégrables sur I, d'intégrale 1.

Donc en intégrant, on obtient $\frac{1}{FG}\int_{I}fg \leq \frac{1}{p} + \frac{1}{q} = 1$, d'où l'inégalité voulue.

Méthode de Laplace :

Problème:

Pour $I(x) = \int_a^b h(t)e^{xg(t)}dt$, on cherche un équivalent de I(x) quand $x \to +\infty$

On a le théorème (Hors programme):

Théorème de Laplace :

Soit $h:]0; a] \to \mathbb{C}$ continue intégrable telle que $h(t) \underset{t \to 0}{\sim} C_1 t^{\alpha}$ (où $\alpha > -1$)

Et $g:[0;a] \to \mathbb{R}$ strictement décroissante continue et ayant en 0 un DL de la forme $g(t) = b - ct^{\beta} + o(t^{\beta})$ où b = g(0), c > 0, $\beta > 0$.

Alors
$$\int_0^a h(t)e^{xg(t)}dt \underset{x \to +\infty}{\sim} C_1 \int_0^{+\infty} t^{\alpha} e^{x(b-ct^{\beta})}dt = \frac{C_1 e^{xb}}{\beta} (cx)^{-\frac{\alpha+1}{\beta}} \Gamma\left(\frac{\alpha+1}{\beta}\right)$$

(Pour le calcul, il suffit de faire le changement de variable $t = \left(\frac{u}{cx}\right)^{1/\beta}$)

II Suites et séries d'intégrales

A) Remarque sur la nature des théorèmes

Problème :

On doit étudier $\lim_{n\to+\infty} \int_I f_n(t) dt$.

On va voir pour cela deux théorèmes :

- Ce sont des conditions suffisantes (pas nécessaires)
- Les hypothèses sont de deux types :

Régularité (toutes les fonctions seront au moins continues par morceaux)

La suite $(f_n)_{n \in \mathbb{N}}$ converge simplement.

Et il y aura un contrôle de convergence.

B) Rappel: cas de la convergence uniforme sur un segment

Théorème:

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions continues par morceaux où $\forall n\in\mathbb{N}, f_n:[a,b]\to\mathbb{C}$. On suppose que la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur [a,b] vers $g:[a,b]\to\mathbb{C}$ elle-même continue par morceaux.

Alors
$$\lim_{n \to +\infty} \int_a^b f_n = \int_a^b g$$

Ici, le contrôle de convergence est « convergence uniforme sur un segment ».

Pour tout
$$n \in \mathbb{N}$$
, $\left| \int_{a}^{b} f_{n} - \int_{a}^{b} g \right| \le \int_{a}^{b} \|f_{n} - g\|_{\infty} dt = (b - a) \|f_{n} - g\|_{\infty} \to 0$

Remarque:

Si $(f_n)_{n\in\mathbb{N}}$, suite de fonctions continues par morceaux converge vers g, alors g est continue en tout point où tous les f_n sont continues. Donc g est continue sur le complémentaire d'un ensemble dénombrable, donc pas forcément continue elle-même.

Corollaire:

Enoncé analogue pour les séries.

Exercice:

Calculer, pour
$$|x| < 1$$
 et $n \in \mathbb{N}$, $I_n(x) = \int_0^{\pi} \frac{\cos n \cdot t}{1 - x \cos t} dt$

Méthode 1

On a, pour tout $t \in \mathbb{R}$, $\cos((n+1)t) + \cos((n-1)t) = 2\cos n.t\cos t$

Donc
$$I_{n+1}(x) + I_{n-1}(x) = \int_0^{\pi} \frac{2\cos n \cdot t \cos t}{1 - x \cos t} dt$$

Soit $xI_{n+1}(x) - I_{n-1}(x) = \underbrace{\int_0^{\pi} \frac{2\cos n \cdot t (x \cos t - 1)}{1 - x \cos t} dt}_{=0} + 2I_n(x)$

On a donc une récurrence linéaire...

Méthode 2:

$$\frac{1}{1 - x \cos t} = \frac{2e^{it}}{2e^{it} - x(e^{2it} + 1)} = F(e^{it}) \text{ où } F = \frac{2X}{2X - x(X^2 + 1)}$$

Décomposition en éléments simples :

$$F(z) = \frac{\alpha}{z - r_1} + \frac{\beta}{z - r_2} \text{ avec } r_1 r_2 = 1 \text{. On peut supposer } |r_1| > 1 \text{ et } |r_2| < 1.$$

$$F(e^{it}) = -\frac{\alpha}{r_1} \left(\sum_{n=0}^{+\infty} \frac{e^{i.nt}}{r_1^n} \right) + \frac{\beta}{e^{it}} \left(\sum_{n=0}^{+\infty} r_2^n e^{-i.nt} \right)$$

On a donc deux séries normalement convergentes, et on peut intégrer terme à terme sur le segment $[0;2\pi]$

C) Théorème de convergence dominée

Théorème (admis):

Soit I un intervalle de \mathbb{R} , quelconque, $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions continues par morceaux sur I à valeurs dans \mathbb{C} , et $g:I\to\mathbb{C}$ continue par morceaux.

On suppose:

- Que $(f_n)_{n \in \mathbb{N}}$ converge simplement sur *I* vers *g*.
- La convergence est dominée, c'est-à-dire qu'il existe $\varphi: I \to \mathbb{R}$, continue par morceaux, positive et intégrable telle que $\forall n \in \mathbb{N}, \forall t \in I, |f_n(t)| \leq \varphi(t)$.

Alors les f_n et g sont intégrables, et $\lim_{n \to +\infty} \int_I f_n = \int_I g$

Remarque:

Le caractère intégrable des f_n et de g découle de la domination :

Pour les f_n , le résultat est clair. Pour g, on a $\forall n \in \mathbb{N}, \forall t \in I, |f_n(t)| \leq \varphi(t)$ donc par passage à la limite simple $\forall t \in I, |g(t)| \leq \varphi(t)$ d'où le résultat.

Exercice:

On suppose ici que $I=\mathbb{R}$, et que $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur tout segment de \mathbb{R} vers g et que les autres hypothèses du théorème sont satisfaites.

Alors
$$\lim_{n\to+\infty} \int_I f_n = \int_I g$$
.

En effet

Soit $\varepsilon > 0$. Il existe alors A > 0 tel que $\int_A^{+\infty} \varphi(t) dt \le \frac{\varepsilon}{6}$ et $\int_{-\infty}^{-A} \varphi(t) dt \le \frac{\varepsilon}{6}$ car φ est intégrable.

Alors pour tout $n \in \mathbb{N}$,

$$\left| \int_{\mathbb{R}} f_{n} - \int_{\mathbb{R}} g \right| = \left| \int_{-\infty}^{-A} f_{n} - g + \int_{-A}^{A} f_{n} - g + \int_{A}^{+\infty} f_{n} - g \right|$$

$$\leq \int_{-\infty}^{-A} 2\varphi + 2A \left\| (f_{n} - g)_{/[-a,a]} \right\|_{\infty} + \int_{A}^{+\infty} 2\varphi$$

$$\leq \frac{2\varepsilon}{3} + 2A \left\| (f_{n} - g)_{/[-a,a]} \right\|_{\infty}$$

Par convergence uniforme de $(f_n)_{n\in\mathbb{N}}$ vers g sur [-A,A], il existe $N\in\mathbb{N}$ tel que

$$\forall n \ge N, 2A \left\| (f_n - g)_{/[-a,a]} \right\|_{\infty} \le \frac{\varepsilon}{3}$$

Et donc $\forall n \ge N, \left| \int_{\mathbb{R}} f_n - \int_{\mathbb{R}} g \right| \le \varepsilon$

D) Exercice : formule de Gauss pour la fonction gamma

Calculer
$$\lim_{n \to +\infty} \int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt$$
 pour $\operatorname{Re}(x) > 0$.

En déduire que
$$\lim_{n\to+\infty} \frac{n^x n!}{x.(x+1)...(x+n)} = \Gamma(x)$$
 (formule de Gauss),

Et la valeur de $\Gamma(1/2)$.

Soit $x \in \mathbb{C}$ de partie réelle strictement positive.

On pose
$$I_n = \int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt$$
.

En faisant le changement de variable $u = \frac{t}{n}$ (pour $n \ge 1$), on a :

$$I_n = \int_0^1 (1-u)^n (nu)^{x-1} n du = n^x \int_0^1 (1-u)^n u^{x-1} du.$$

Pour $n \ge 1$, on a:

$$I_{n} = n^{x} \left[\left[(1-u)^{n} \frac{u^{x}}{x} \right]_{0}^{1} + n \int_{0}^{1} (1-u)^{n-1} \frac{u^{x}}{x} du \right]$$

$$= n^{x} \frac{n}{x} \int_{0}^{1} (1-u)^{n-1} u^{x} du$$

$$= \dots = n^{x} \frac{n \dots 1}{x(x+1) \dots (x+n-1)} \int_{0}^{1} u^{x+n-1} du = n^{x} \frac{n!}{x(x+1) \dots (x+n)}$$

Maintenant:

On pose
$$I =]0; +\infty[$$
, et pour $n \ge 1$, $t \in I$: $f_n(t) = \begin{cases} \left(1 - \frac{t}{n}\right)^n t^{x-1} & \text{si } 0 < t \le n \\ 0 & \text{sinon} \end{cases}$

Soit alors $t \in I$. Alors pour tout n > t, on a

$$f_n(t) = e^{n \ln(1 - \frac{t}{n})} t^{x - 1} = e^{n \left(-\frac{t}{n} + O(\frac{1}{n^2})\right)} t^{x - 1} \xrightarrow[n \to +\infty]{} g(t) = e^{-t} t^{x - 1}$$

Donc $(f_n)_{n\in\mathbb{N}}$ converge simplement vers g sur I.

De plus, les f_n et g sont de classe C^{∞} sur I.

Condition de domination :

$$\left|f_n(t)\right| = e^{n\ln\left(1-\frac{t}{n}\right)}t^{\operatorname{Re}(x)-1} \le e^{-t}t^{\operatorname{Re}(x-1)} = \varphi(t)$$

(Inégalité de convexité de ln : $\forall u > -1, \ln(1+u) \le u$)

Comme φ est continue par morceaux, intégrable sur I (par définition de Γ) car

$$\operatorname{Re}(x) > 0$$
, on a $\lim_{n \to +\infty} I_n = \int_0^{+\infty} g(t) dt = \Gamma(x)$.

Pour le calcul de $\Gamma(1/2)$:

On a
$$\Gamma(1/2) = \lim_{n \to +\infty} \frac{\sqrt{n \cdot n!}}{\underbrace{\frac{1}{2} \cdot (1 + \frac{1}{2}) \dots (n + \frac{1}{2})}_{\alpha}}$$

Mais

$$\alpha_{n} = \frac{2^{n+1}\sqrt{n}.n!}{1\times 3\times ...\times (2n+1)} = \frac{2^{n}n!2^{n+1}\sqrt{n}.n!}{(2n+1)!} = \frac{2^{2n+1}(n!)^{2}\sqrt{n}}{(2n+1)(2n)!}$$

$$\underset{n\to +\infty}{\sim} \frac{2^{2n+1}2\pi.n\left(\frac{n^{n}}{e^{n}}\right)^{2}\sqrt{n}}{(2n+1)\sqrt{4\pi.n}\frac{(2n)^{2n}}{e^{2n}}} = \frac{2n}{2n+1}\sqrt{\pi}$$

Donc
$$\Gamma(1/2) = \sqrt{\pi}$$

Application:

Calculer $\int_{-\infty}^{+\infty} e^{-t^2} dt$ (intégrale de Gauss)

Déjà, la fonction est intégrable.

On a de plus
$$I = 2 \int_0^{+\infty} e^{-t^2} dt = \int_0^{+\infty} \frac{e^{-u}}{\sqrt{u}} du = \Gamma(1/2)$$

E) Remarque : peut-on montrer qu'une limite simple n'est pas intégrable ?

Si on peut appliquer le théorème de convergence dominée à une suite $(f_n)_{n\in\mathbb{N}}$ de limite simple g, alors g est intégrable.

Idée :

Théorème de la convergence monotone (Hors programme) :

On suppose que la suite $(f_n)_{n\in\mathbb{N}}$ de fonctions réelles converge simplement sur Ivers g, avec $\forall n \in \mathbb{N}, \forall t \in I, 0 \le f_n(t) \le g(t)$.

On suppose de plus que les f_n et g sont continus par morceaux sur I et que les f_n sont intégrables.

On a deux cas:

Soit la suite réelle $\left(\int_{I} f_{n}\right)_{n=N}$ est majorée.

Alors g est intégrable et $\int_{I} g = \lim_{n \to \infty} \int_{I} f_n$

- Soit $\left(\int_{I} f_n\right)_{n\in\mathbb{N}}$ n'est pas majorée; alors g n'est pas intégrable et $\lim_{n\to\infty}\int_{I} f_n = +\infty$.

Autrement dit, si g est intégrable, alors $\lim_{n\to+\infty} \int_I f_n = \int_I g$ et sinon $\lim_{n\to+\infty} \int_I f_n = +\infty$.

Démonstration:

Si g est intégrable, on applique le théorème de convergence dominée avec $\varphi = g$

Sinon, pour tout A > 0, il existe $[u, v] \subset I$ tel que $\int_{-\infty}^{v} g > A$

On applique le théorème de convergence dominée à $(f_{n/[u,v]})_{n\in\mathbb{N}}$ qui converge simplement vers g sur [u,v] avec la domination $\forall n \in \mathbb{N}, \forall t \in [u,v], |f_n(t)| \leq g(t)$

(g est intégrable sur [u,v])

Alors
$$\lim_{n \to \infty} \int_{0}^{\nu} f_n = \int_{0}^{\nu} g > A$$
.

Donc il existe $N \in \mathbb{N}$ tel que $\forall n \ge N, \int_{I} f_n \ge \int_{I}^{V} f_n > A$

Ce qui montre le résultat voulu.

F) Théorème d'intégration terme à terme des séries

Théorème (admis):

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de fonctions $u_n:I\to\mathbb{C}$.

On suppose que :

- Les u_n sont continus par morceaux et intégrables sur I.
- $\sum_{n=0}^{+\infty} u_n$ converge simplement vers $g: I \to \mathbb{C}$
- g est continue par morceaux.
 La série de terme général ∫_I|u_n| est convergente.

Alors g est intégrable, et :

$$\int_{I} g = \sum_{n=0}^{+\infty} \int_{I} u_{n} , \left| \int_{I} g \right| \leq \int_{I} \left| g \right| \leq \sum_{n=0}^{+\infty} \int_{I} \left| u_{n} \right| .$$

Remarques:

- Ce n'est qu'une condition suffisante pour que g soit intégrable.
- Lorsque le théorème s'applique, la série $\sum_{n=0}^{+\infty} \int_{1} |u_{n}|$ est absolument convergente.

Exercice:

On suppose que $(u_n)_{n\in\mathbb{N}}$ est une suite de fonctions réelles positives et continues par morceaux, telle que $\sum_{n=0}^{+\infty}u_n=g$. Alors g est intégrable si et seulement si $\sum_{n=0}^{+\infty}\int_Iu_n$ converge et dans ce cas $\sum_{n=0}^{+\infty}\int_Iu_n=\int_Ig$.

En effet : il suffit d'appliquer le théorème de convergence monotone à $f_n = \sum_{k=0}^n u_k$.

III Etude des fonctions de la forme $x \mapsto \int_{\Gamma} f(x,t)dt$

A) Continuité

Théorème:

Soit A une partie d'un evn E (ou A un espace métrique), I un intervalle de \mathbb{R} .

On considere une application $f: A \times I \to \mathbb{C}$ $(x,t) \mapsto f(x,t)$

On suppose que:

- Pour tout $t \in I$, l'application $x \mapsto f(x,t)$ est continue en x_0 (resp. sur A)
- Pour tout $x \in A$, l'application $t \mapsto f(x,t)$ est continue par morceaux.
- Il existe $\varphi: I \to \mathbb{R}$ positive, continue par morceaux et intégrable telle que $\forall (x,t) \in A \times I, |f(x,t)| \leq \varphi(t)$, domination uniforme en x.

Alors $F: x \in A \mapsto \int_{I} f(x,t)dt$ est définie sur A et continue en x_0 (resp. A)

Amélioration (au programme!):

Avec les notations précédentes, on suppose que

- Pour tout $t \in I$, $x \mapsto f(x,t)$ est continue sur A.
- Pour tout $x \in A$, $t \mapsto f(x,t)$ est continue par morceaux.
- Pour tout compact $K \subset A$, il existe $\varphi_k : I \to \mathbb{R}$ continue par morceaux, positive et intégrable telle que $\forall (x,t) \in K \times I, |f(x,t)| \leq \varphi_K(t)$

Alors F est définie et continue sur A.

Démonstration:

Continuité en x_0 .

F est définie pour tout $x \in A$ car $t \mapsto f(x,t)$ est continue par morceaux dominée par φ intégrable.

Pour montrer que F est continue en x_0 , on va montrer que pour toute suite $(y_n)_{n \in \mathbb{N}}$ de A telle que $\lim_{n \to +\infty} y_n = x_0$, on a $\lim_{n \to +\infty} F(y_n) = F(x_0)$.

Soit $(y_n)_{n\in\mathbb{N}}\in A^{\mathbb{N}}$ qui tend vers x_0 .

On pose, pour $n \in \mathbb{N}$, $f_n(t) = f(y_n, t)$ et $g(t) = f(x_0, t)$

On peut alors appliquer le théorème de convergence dominée :

- Les f_n sont continues par morceaux
- $(f_n)_{n \in \mathbb{N}}$ converge vers g car $x \mapsto f(x,t)$ est continue en x_0
- Domination par φ .

On a donc $\lim_{n \to +\infty} \int_{I} f_n(t) dt = \int_{I} g(t) dt$

C'est-à-dire $\lim_{n\to+\infty} F(y_n) = F(x_0)$

Pour l'amélioration:

F(x) est défini pour tout x car $K = \{x\}$ est compact donc il existe $\varphi_K : I \to \mathbb{R}_+$ continue par morceaux intégrable telle que $\forall t \in I, |f(x,t)| \le \varphi_K(t)$ donc $t \mapsto f(x,t)$ est intégrable.

Continuité:

Soit $(y_n)_{n\in\mathbb{N}}$ une suite tendant vers x.

Alors $K = \{y_n, n \ge 0\} \cup \{x\}$ est un compact de A (en dimension finie, c'est parce que c'est un fermé borné, sinon c'est la propriété de Borel-Lebesgue)

Donc il existe $\varphi_K: I \to \mathbb{R}$ continue par morceaux positive et intégrable telle que $\forall z \in K, \forall t \in I, |f(z,t)| \leq \varphi_K(t)$

La fin de la démonstration est la même.

Complément:

Cas d'une fonction globalement continue et d'un segment :

Soit I = [a,b] un segment, et $f: A \times [a,b] \to \mathbb{C}$ globalement continue.

Alors $F: x \in A \mapsto \int_a^b f(x,t)dt$ est continue.

Attention:

Il faut bien différencier continuité partielle et globale :

Par exemple, si $f: \mathbb{R}^2 \to \mathbb{R}$ est partiellement continue, alors pour toute suite $(v_n)_{n\in\mathbb{N}}$ de \mathbb{R}^2 tendant vers $A\in\mathbb{R}^2$ en restant sur une verticale/horizontale, on a $\lim_{n\to\infty} f(v_n) = f(A)$

Si $f: \mathbb{R}^2 \to \mathbb{R}$ est globalement continue, alors pour toute suite $(v_n)_{n \in \mathbb{N}}$ de \mathbb{R}^2 tendant vers $A \in \mathbb{R}^2$, $\lim_{n \to +\infty} f(v_n) = f(A)$.

Démonstration du complément :

Pour tout compact $K \subset A$, $f: K \times [a,b] \to \mathbb{C}$ est continue sur un compact donc bornée.

Soit C_K tel que $\forall (x,t) \in K \times [a,b], |f(x,t)| \leq C_K$

Comme la fonction $t \mapsto C_K$ est intégrable sur [a,b], le théorème s'applique et F est continue sur A.

B) Caractère C^1 de $F: x \mapsto \int_T f(x,t)dt$

Théorème:

Soit A un intervalle de \mathbb{R} , I un intervalle de \mathbb{R} .

Soit $f: A \times I \to \mathbb{C}$. On suppose:

- (1) Pour tout $x \in A$, l'application $t \mapsto f(x,t)$ est continue par morceaux intégrable sur I.
- (2) $\frac{\partial f}{\partial x}$ est définie sur $A \times I$, continue par rapport à x et continue par morceaux par rapport à t.
- (3) Il existe $\varphi_1: I \to \mathbb{R}$ continue par morceaux, positive et intégrable telle que

$$\forall (x,t) \in A \times I, \left| \frac{\partial f}{\partial x}(x,t) \right| \leq \varphi_1(t)$$
 (domination uniforme en x).

Alors $F: x \in A \mapsto \int_{\Gamma} f(x,t) dt$ est définie et de classe C^1 sur A, et

$$\forall x \in A, F'(x) = \int_{I} \frac{\partial f}{\partial x}(x, t) dt$$
 (Formule de Leibniz)

Généralisation (au programme) :

On peut remplacer (3) par :

Pour tout compact $K \subset A$, il existe $\varphi_K : I \to \mathbb{R}$, continue par morceaux positive et

intégrable telle que
$$\forall (x,t) \in K \times I, \left| \frac{\partial f}{\partial x}(x,t) \right| \leq \varphi_K(t)$$

Démonstration:

L'hypothèse (1) montre déjà que F est défini sur A.

Soit
$$x_0 \in A$$
. On va montrer que $\lim_{h \to 0} \frac{F(x_0 + h) - F(x_0)}{h} = \int_I \frac{\partial f}{\partial x}(x_0, t) dt$

Soit $(h_n)_{n\in\mathbb{N}}$ une suite de \mathbb{R}^* tendant vers 0, et posons

$$g_n(t) = \frac{f(x_0 + h_n, t) - f(x_0, t)}{h_n}$$

Alors les g_n sont continues par morceaux car $t \mapsto f(x_0, t)$ l'est.

Et de plus $(g_n)_{n\in\mathbb{N}}$ converge simplement sur I vers $h: t \mapsto \frac{\partial f}{\partial x}(x_0, t)$

D'après l'inégalité des accroissements finis appliquée à $x \mapsto f(x,t)$, on a :

$$\forall n \in \mathbb{N}, \forall t \in I, |g_n(t)| \le \sup_{u \in [x_0, x_0 + h_n]} \left| \frac{\partial f}{\partial x}(u, t) \right|$$

Or,
$$\forall u \in A, \forall t \in I, \left| \frac{\partial f}{\partial x}(u, t) \right| \leq \varphi_1(t)$$

Donc
$$\forall n \in \mathbb{N}, \forall t \in I, |g_n(t)| \leq \varphi_1(t)$$

Comme φ_1 est intégrable, la condition de domination est vérifiée, c'est-à-dire :

$$\lim_{n\to+\infty}\int_{I}g_{n}(t)dt = \int_{I}h(t)dt$$

Conclusion:

F est dérivable en
$$x_0$$
 et $F'(x_0) = \int_I \frac{\partial f}{\partial x}(x_0, t) dt$

Comme de plus F' est continue, F est de classe C^1 .

C) Caractère C^k de $x \mapsto \int_I f(x,t)dt$

Théorème (hors programme):

Soient A et I deux intervalles de \mathbb{R} , $f: A \times I \to \mathbb{C}$ et $k \in \mathbb{N} \cup \{+\infty\}$.

On suppose que :

- Pour tout $j \in \mathbb{N}$ tel que $j \le k$, f admet une dérivée $\frac{\partial^j f}{\partial x^j}$ sur $A \times I$.
- Pour ces valeurs de j, $\frac{\partial^j f}{\partial x^j}$ est continue par rapport à x, continue par morceaux par rapport à t.
- Pour tout compact $K \subset A$ et tout entier $j \leq k$, il existe $\varphi_{K,j}: I \to \mathbb{R}$ continue par morceaux intégrable telle que $\forall (x,t) \in K \times I, \left| \frac{\partial^j f}{\partial x^j}(x,t) \right| \leq \varphi_{K,j}(t)$

Alors $F: x \mapsto \int_{\Gamma} f(x,t) dt$ est de classe C^k , dérivable k fois sous l'intégrale.

Démonstration:

Si $k \in \mathbb{N}$, on fait par récurrence.

Sinon,
$$C^{\infty} = \bigcap_{k \in \mathbb{N}} C^k$$
.

D) Interversion des intégrations

Théorème : formule de Fubini :

Soient [a,b], [c,d] deux segments de \mathbb{R} , et $f:[a,b]\times[c,d]\to\mathbb{C}$ continue.

Alors les intégrales suivantes ont un sens et :

$$\int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx = \int_{c}^{d} \left(\int_{a}^{b} f(x, y) dx \right) dy.$$

Où $x \mapsto \int_{c}^{d} f(x, y) dy$ et $y \mapsto \int_{a}^{b} f(x, y) dx$ sont continues.

Démonstration :

Posons pour
$$x \in [a,b]$$
, $\varphi(x) = \int_{c}^{d} \left(\int_{a}^{x} f(s,y) ds \right) dy$

Calcul de φ' :

On pose
$$\alpha : [a,b] \times [c,d] \to \mathbb{C}$$

 $(x,y) \mapsto \int_{-\infty}^{\infty} f(s,y) ds$

On va montrer que le théorème sur le caractère C^1 de $x \mapsto \int_c^d \alpha(x, y) dy$ est vérifié. Déjà, à x fixé, $y \mapsto \alpha(x, y)$ est continue par morceaux et intégrable.

En effet:

 $s \mapsto f(s, y)$ est continue, et on a la majoration uniforme

$$\forall s \in [a, x], \forall y \in [c, d], |f(s, y)| \le ||f||_{\infty}$$

Et $s \mapsto ||f||_{\infty}$ est intégrable sur [a, x]. Donc $y \mapsto \alpha(x, y)$ est continue.

Enfin, $y \mapsto \alpha(x, y)$ est intégrable car

$$\forall (x,y) \in [a,b] \times [c,d], |\alpha(x,y)| \le |x-a| ||f||_{\infty} \le (b-a) ||f||_{\infty}$$

De plus,
$$\alpha$$
 est dérivable par rapport à x et $\frac{\partial \alpha}{\partial x}(x, y) = f(x, y)$

Et cette fonction est continue par morceaux par rapport à y, continue par rapport à x car f est globalement continue.

Elle est de plus dominée par une constante, qui est intégrable.

Donc
$$\varphi$$
 est dérivable, et $\forall x \in [a,b], \varphi'(x) = \int_{c}^{d} \frac{\partial \alpha}{\partial x}(x,y)dy = \int_{c}^{d} f(x,y)dy$

Ainsi,
$$\int_{c}^{d} \left(\int_{a}^{b} f(x, y) dx \right) dy = \varphi(b) - \varphi(a) = \int_{a}^{b} \varphi'(s) ds = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx.$$

E) Exemples et applications

• Fonction Γ :

Théorème:

$$\Gamma$$
 est de classe C^{∞} sur $]0;+\infty[$ et on a $\forall k \in \mathbb{N}, \forall x > 0, \varphi^k(x) = \int_0^{+\infty} \ln^k t.e^{-t}t^{x-1}dt$

Démonstration:

On pose $f(x,t) = e^{-t}t^{x-1}$ pour x,t > 0.

A t strictement positif fixé, $x \mapsto f(x,t)$ est de classe C^{∞} et pour tout $k \in \mathbb{N}$,

$$\frac{\partial^k f}{\partial x^k}(x,t) = \ln^k t.e^{-t}t^{x-1}$$

Pour tout segment $[a,b] \subset]0; +\infty[$ et tout $k \in \mathbb{N}$, on a :

$$\forall (x,t) \in [a,b] \times]0; +\infty[, \left| \frac{\partial^k f}{\partial x^k}(x,t) \right| \le \begin{cases} \ln^k t \cdot e^{-t} \cdot t^{b-1} \operatorname{si} t \ge 1\\ \left| \ln^k t \right| \cdot e^{-t} \cdot t^{a-1} \operatorname{si} t \le 1 \end{cases}$$

On pose alors
$$\varphi_{[a,b],k} = \begin{cases} \ln^k t \cdot e^{-t} \cdot t^{b-1} & \text{si } t \ge 1 \\ |\ln^k t| e^{-t} \cdot t^{a-1} & \text{si } t \le 1 \end{cases}$$

 $\varphi_{[a,b],k}$ est bien continue par morceaux et intégrable sur $]0;+\infty[$.

En effet, $\lim_{t\to+\infty}t^2\varphi_{[a,b],k}(t)=\lim_{t\to+\infty}t^{b+1}\ln^k t.e^{-t}=0$, donc $\varphi_{[a,b],k}$ est intégrable sur $[1;+\infty[$. Et $\lim_{t\to0}t^{(1-a/2)}\varphi_{[a,b],k}(t)=0$ car a>0. Donc $\varphi_{[a,b],k}$ est intégrable sur $[0;+\infty[$.

On en déduit que Γ est de classe C^{∞} sur tout intervalle $[a,b] \subset]0;+\infty[$ donc sur $]0;+\infty[$, et $\forall k \in \mathbb{N}, \forall x > 0, \Gamma^{(k)}(x) = \int_0^{+\infty} e^{-t} \ln^k t.t^{x-1} dt$

Remarque:

On a $\Gamma'' > 0$ donc Γ est convexe!

- Cas des intégrales $x \mapsto \int_{\alpha(x)}^{\beta(x)} f(x,t) dt$.
- (1) Cas particulier:

Si $F: x \mapsto \int_{\alpha(x)}^{\beta(x)} \varphi(t) dt$. Si φ est continue, on prend φ une primitive de φ , et alors $F(x) = \varphi(\beta(x)) - \varphi(\alpha(x))$.

Donc si φ est continue sur l'intervalle $A \subset \mathbb{R}$ et $\alpha, \beta : I \to A$ sont de classe C^1 , alors F est de classe C^1 et $F'(x) = (\beta' \varphi \circ \beta - \alpha' \varphi \circ \alpha)(x)$

(2) Reste intégral de Taylor :

Soit $f:[a,b] \to \mathbb{C}$ de classe C^{n+1} . Pour tout $x \in [a,b]$, on a:

$$f(x) = \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) + \int_a^x \frac{(x-t)^n}{n!} f^{(n)}(t) dt$$

Soit $g:[a,b] \to \mathbb{C}$ continue.

Alors
$$G: x \mapsto \int_a^x \frac{(x-t)^n}{n!} g(t) dt$$
 est de classe C^{n+1} et $G^{(n+1)} = g$.

En effet, soit f une primitive d'ordre n+1 de g, c'est-à-dire telle que $f^{(n+1)}=g$. Ainsi, f est de classe C^{n+1} .

On applique la formule de Taylor à f:

$$G(x) = f(x) - \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a)$$

Donc comme f est de classe C^{n+1} et $x \mapsto \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a)$ aussi (c'est un polynôme), G est de classe C^{n+1} et $G^{(n+1)}(x) = f^{(n+1)}(x) = g$

Remarque:

G est l'unique primitive d'ordre n+1 de g telle que $G(a) = ... = G^{(n)}(a) = 0$

(3) Cas général:

On a
$$\int_{\alpha(x)}^{\beta(x)} f(x,t)dt = (\beta(x) - \alpha(x)) \int_0^1 f(x,u\beta(x) + (1-u)\alpha(x)) du$$

Et on peut appliquer les théorèmes à $x \mapsto \int_0^1 f(x, u\beta(x) + (1-u)\alpha(x)) du$

• Convolution périodique :

On note C l'ensemble des fonctions continues 2π périodiques.

On note E l'ensemble des fonctions continues par morceaux 2π périodiques. Ainsi, on a déjà $C \subset E$.

Pour $f, g \in E$ et $x \in \mathbb{R}$, on pose $(f * g)(x) = \frac{1}{2\pi} \int_0^{2\pi} f(x-t)g(t)dt$

f * g s'appelle la convolée de f et g.

Proposition:

- (1) Pour $f, g \in E$, f * g = g * f et $f * g \in C$.
- (2) La loi * est associative dans C (et même dans E)
- (3) Si $f \in E$ est de classe C^k , $g \in E$ de classe C^l , alors f * g est de classe C^{k+l} et $(f * g)^{(k+l)} = f^{(k)} * g^{(l)}$.
- (4) (C,+,.,*) est une algèbre non unitaire.

Démonstration:

Pour $f, g \in E$ et $x \in \mathbb{R}$, on a:

$$(g * f)(x) = \frac{1}{2\pi} \int_0^{2\pi} g(x-t)f(t)dt = \frac{1}{2\pi} \int_{x-2\pi}^x g(u)f(x-u)du = (f * g)(x)$$

(Car $u \mapsto g(u) f(x-u)$ est 2π périodique, donc

$$\int_{x-2\pi}^{x} g(u) f(x-u) du = \int_{0}^{2\pi} g(u) f(x-u) du$$

Et f * g est 2π périodique car fg l'est.

Continuité:

Si f est partout continue, on pose alors $\alpha : \mathbb{R} \times [0;2\pi] \to \mathbb{C}$ $(x,t) \mapsto f(x-t)g(t)$

Comme f est continue, $x \mapsto \alpha(x,t)$ l'est aussi pour tout $t \in [0;2\pi]$.

De plus, f et g sont 2π périodiques donc bornées sur \mathbb{R} .

Ainsi, $\forall (x,t) \in \mathbb{R} \times [0;2\pi], |\alpha(x,t)| \leq \varphi(t)$ où $\varphi(t) = ||f||_{\infty} ||g||_{\infty}$, continue par morceaux et intégrable.

Donc le théorème de continuité des intégrales dépendant d'un paramètre s'applique et $f * g \in C$.

Cas général:

Comme f est continue par morceaux, il existe une suite de fonctions $f_n: \mathbb{R} \to \mathbb{C}$ continues telles que $\lim_{n \to +\infty} \int_0^{2\pi} \left| f_n - f \right| = 0$.

Alors la suite de fonctions continues $f_n * g$ converge uniformément sur $\mathbb R$ vers f * g. En effet,

$$\forall x \in \mathbb{R}, \left| (f * g)(x) - (f_n * g)(x) \right| \le \frac{1}{2\pi} \int_0^{2\pi} \left| g(t) \right| \left| f_n(x - t) - f(x - t) \right| dt$$

$$\le \frac{1}{2\pi} \left\| g \right\|_{\infty} \left\| f - f_n \right\|_{1} \xrightarrow[n \to +\infty]{} 0$$

Donc f * g est continue comme limite uniforme de fonctions continues.

Associativité dans *C* :

Soient $f, g, h \in C$ et $x \in \mathbb{R}$. Alors

$$((f * g) * h)(x) = \frac{1}{2\pi} \int_0^{2\pi} (f * g)(x)h(x-t)dt$$

$$= \frac{1}{4\pi^2} \int_0^{2\pi} \left(\int_0^{2\pi} f(s)g(t-s)ds \right) h(x-t)dt$$

$$= \frac{1}{4\pi^2} \int_0^{2\pi} \left(\int_0^{2\pi} f(s)g(t-s)h(x-t)ds \right) dt$$

A x fixé, $(s,t) \mapsto f(s)g(t-s)h(x-t)$ est continue, donc d'après le théorème de Fubini,

$$((f * g) * h)(x) = \frac{1}{4\pi^2} \int_0^{2\pi} \left(\int_0^{2\pi} f(s)g(t-s)h(x-t)dt \right) ds$$

$$= \frac{1}{4\pi^2} \int_0^{2\pi} f(s) \left(\int_0^{2\pi} g(t-s)h(x-t)dt \right) ds$$

$$= \frac{1}{4\pi^2} \int_0^{2\pi} f(s) \left(\int_{-s}^{2\pi-s} g(u)h(x-s-u)du \right) ds$$

$$((f*g)*h)(x) = \frac{1}{2\pi} \int_0^{2\pi} f(s)(g*h)(x-s)ds$$
$$= (f*(g*h))(x)$$

Remarque:

L'application $(E, \| \|_{\infty}) \times (E, \| \|_{1}) \to (C, \| \|_{\infty})$ est continue bilinéaire : $(f,g) \mapsto f *g$

$$\forall x \in \mathbb{R}, \left| (f * g)(x) \right| \le \frac{1}{2\pi} \int_0^{2\pi} \|f\|_{\infty} |g(x-t)| dt \le \frac{1}{2\pi} \|f\|_{\infty} \int_0^{2\pi} g(u) du \le \frac{1}{2\pi} \|f\|_{\infty} \|g\|_{1}$$

Donc
$$||f * g||_{\infty} \le \frac{1}{2\pi} ||f||_{\infty} ||g||_{1}$$

Application:

Soient $f,g\in C,h\in E$. Alors il existe $(h_n)_{n\in\mathbb{N}}$ suite de C telle que $\|h-h_n\|_1\to 0$.

Comme pour tout $n \in \mathbb{N}$, $f, g, h_n \in \mathbb{C}$, on a $\forall n \in \mathbb{N}$, $(f * g) * h_n = f * (g * h_n)$

Donc par continuité de *, (f*g)*h = f*(g*h)

Dérivabilité:

Soit $f: \mathbb{R} \to \mathbb{C}$ de classe C^1 $g: \mathbb{R} \to \mathbb{C}$ continue, toutes deux 2π périodiques.

Alors f * g est de classe C^1 :

On a
$$\forall x \in \mathbb{R}, (f * g)(x) = \frac{1}{2\pi} \int_0^{2\pi} f(t)g(x-t)dt$$

Mais on a aussi
$$\forall x \in \mathbb{R}, (f * g)(x) = \frac{1}{2\pi} \int_0^{2\pi} f(x-t)g(t)dt$$
 (car $f * g = g * f$)

Soit
$$h: \mathbb{R} \times [0;2\pi] \to \mathbb{C}$$

 $(x,t) \mapsto f(x-t)g(t)$

Alors h est continue donc intégrable par rapport à t sur $[0;2\pi]$ pour tout $x \in \mathbb{R}$.

De plus, h est dérivable par rapport à x sur $\mathbb{R} \times [0;2\pi]$ avec :

$$\forall (x,t) \in \mathbb{R} \times [0;2\pi], \frac{\partial h}{\partial x}(x,t) = f'(x-t)g(t)$$

De plus, $\frac{\partial h}{\partial x}$ est continue donc partiellement continue, et

$$\forall (x,t) \in \mathbb{R} \times [0;2\pi], \left| \frac{\partial h}{\partial x}(x,t) \right| \leq \|f'\|_{\infty} \|g\|_{\infty}, \quad \text{et} \quad t \mapsto \|f'\|_{\infty} \|g\|_{\infty} \quad \text{est continue par morceaux intégrable sur } [0;2\pi].$$

Donc f * g est de classe C^1 de dérivée f'*g.

On montre ensuite le cas général par récurrence.

Montrons que * n'a pas d'élément neutre (ni dans C ni dans E)

Supposons que $\delta \in E$ soit neutre pour *, c'est-à-dire que

$$\forall f \in E, \delta * f = f * \delta = f$$

Pour $n \in \mathbb{Z}$, on pose $f: t \mapsto e^{in.t}$ (ainsi, $f \in C \subset E$).

On a alors
$$(f * \delta)(x) = (\delta * f)(x) = \frac{1}{2\pi} \int_0^{2\pi} \delta(t) e^{in(x-t)} dt = c_n(\delta) e^{inx}$$

Donc $\forall n \in \mathbb{Z}, c_n(\delta) = 1$, ce qui est impossible car le lemme de Riemann–Lebesgue indique que $\lim_{n \to +\infty} c_n(\delta) = 0$.

• Le lemme de Riemann–Lebesgue reste encore valable pour un intervalle :

Soit
$$f: I \to \mathbb{C}$$
, intégrable sur l'intervalle I . Alors $\lim_{\lambda \to \pm \infty} \int_I f(t) e^{i\lambda t} dt = 0$

En effet:

Soit $K_n = [a_n, b_n]$ une suite exhaustive de segments de I = |a, b| (c'est-à-dire croissante au sens de l'inclusion et telle que $\bigcup_{n \in \mathbb{N}} K_n = I$)

On note $F: \lambda \mapsto \int_{T} f(t)e^{i\lambda t} dt$, définie sur \mathbb{R} .

Et pour $n \in \mathbb{N}$, on note $f_n : \lambda \mapsto \int_{K_n} f(t)e^{i\lambda t} dt$.

Alors:

La suite $(I_n)_{n\in\mathbb{N}}$ converge uniformément vers F.

En effet, pour tout $\lambda \in \mathbb{R}$ et $n \in \mathbb{N}$, on a :

$$\left|I_n(\lambda) - \int_I f(t)e^{i\lambda t} dt\right| = \left|\int_{b_n}^b f(t)e^{i\lambda t} dt + \int_a^{a_n} f(t)e^{i\lambda t} dt\right|$$

Mais
$$\left| \int_{b_n}^b f(t)e^{i\lambda t} dt \right| \le \int_{b_n}^b \left| f(t) \right| dt \xrightarrow[n \to +\infty]{} 0$$
.

Donc il existe $N \in \mathbb{N}$ tel que $\forall n \ge N, \int_{b_n}^b |f(t)| dt \le \frac{\varepsilon}{2}$

Et de même il existe $N' \in \mathbb{N}$ tel que $\forall n \ge N', \int_a^{a_n} |f(t)| dt \le \frac{\mathcal{E}}{2}$.

Donc en notant $n_0 \ge \max(N, N')$, on a pour tout $n \ge n_0$ et $\lambda \in \mathbb{R}$:

$$\left|I_n(\lambda) - \int_I f(t)e^{i\lambda t}dt\right| \le \varepsilon$$

C'est-à-dire $||I_n - F||_{\infty} \le \varepsilon$.

D'où déjà la convergence uniforme.

Pour tout $n \in \mathbb{N}$, on a de plus $\lim_{\lambda \to \pm \infty} f_n(\lambda) = 0$.

Donc $\lim_{\lambda \to \pm \infty} F(\lambda)$ existe et vaut 0.

Donc $\lim_{\lambda \to \pm \infty} \int_{I} f(t)e^{i\lambda t} dt = 0$.

• Théorème de d'Alembert–Gauss :

Théorème:

Tout polynôme complexe de degré au moins 1 admet au moins une racine.

Ou encore : tout polynôme complexe est scindé sur C.

C'est-à-dire que C est algébriquement clos.

Démonstration :

Soit $P \in \mathbb{C}[X]$ de degré $p \ge 1$.

On suppose que $\forall z \in \mathbb{C}, P(z) \neq 0$

On pose alors, pour $r \in \mathbb{R}$, $\varphi(r) = \int_0^{2\pi} \frac{dt}{P(re^{it})}$.

Alors φ est de classe C^1 sur \mathbb{R} .

Soit
$$h: \mathbb{R} \times [0, \pi] \to \mathbb{C}$$
 . $(r,t) \mapsto \frac{1}{P(re^{it})}$

Alors h est définie et continue car P l'est et ne s'annule pas.

De plus, h est dérivable par rapport à r et on a :

$$\forall (r,t) \in \mathbb{R} \times [0,\pi], \frac{\partial h}{\partial r}(r,t) = \frac{-P'(re^{it})}{P(re^{it})^2} \times e^{it}$$

Donc $\frac{\partial h}{\partial r}$ est globalement, donc partiellement continue sur $\mathbb{R} \times [0, \pi]$.

Pour tout segment [A, B] de \mathbb{R} , $\frac{\partial h}{\partial r}$ est continue sur le compact $[A, B] \times [0, 2\pi]$ donc bornée.

Soit alors M tel que $\forall (r,t) \in [A,B] \times [0,\pi], \left| \frac{\partial h}{\partial r}(r,t) \right| \leq M$

Alors $t \mapsto M$ est intégrable sur $[0, \pi]$.

Ainsi, φ est de classe C^1 et $\forall r \in \mathbb{R}, \varphi'(r) = -\int_0^{2\pi} \frac{e^{it}P'(re^{it})}{P(re^{it})^2} dt$

Calcul de φ' :

$$\forall r \in \mathbb{R}, r \varphi'(r) = i \int_0^{2\pi} \frac{i r e^{it} P'(r e^{it})}{P(r e^{it})^2} dt = -i \int_0^{2\pi} \frac{d}{dt} \left(\frac{1}{P(r e^{it})} \right) dt = -i \left[\frac{1}{P(r e^{it})} \right]_0^{2\pi} = 0$$

Donc $\varphi'=0$ sur \mathbb{R}^* et donc sur \mathbb{R} par continuité.

Donc
$$\varphi = \text{cte} = \varphi(0) = \frac{2\pi}{P(0)}$$

Mais on a $\lim_{r \to +\infty} \varphi(r) = 0$

En effet, si on note $P = X^d + a_{d-1}X^{d-1} + ... + a_0$, on a alors pour tout $z \in \mathbb{C}$:

$$|P(z)| \ge |z|^d - \sum_{k=0}^{d-1} |a_k| |z|^k$$

Alors
$$\forall r \in \mathbb{R}_+, \forall t \in \mathbb{R}, |P(re^{it})| \ge r^d - \sum_{k=0}^{d-1} |a_k| r^k$$

Pour tout $\varepsilon > 0$, il existe A > 0 tel que $\forall r > A, \forall t \in [0, 2\pi], \left| \frac{1}{P(re^{it})} \right| \le \varepsilon$

Donc $\forall r > A, |\varphi(r)| \le 2\pi . \varepsilon$

Donc $\lim_{r \to +\infty} \varphi(r) = 0$, ce qui est impossible.

Remarque:

Pour éviter l'utilisation de dérivation complexe dans le calcul de $\frac{\partial}{\partial r} (P(re^{it}))$ et

$$\frac{\partial}{\partial t} \left(P(re^{it}) \right), \text{ il suffit d'utiliser la linéarité et le fait que } \frac{\partial}{\partial r} \left((re^{it})^n \right) = nr^{n-1}e^{in.t} \text{ et } \frac{\partial}{\partial t} \left((re^{it})^n \right) = inr^n e^{in.t}.$$

Autre démonstration : topologique.

Soit P de degré ≥ 1 ne s'annulant pas.

On a alors pour tout $z \in \mathbb{C}$, $|P(z)| \ge |z|^d - \sum_{k=0}^{d-1} |a_k| |z|^k$.

Donc
$$\lim_{|z| \to +\infty} |P(z)| = +\infty$$

Il existe alors $z_0 \in \mathbb{C}$ tel que $\forall z \in \mathbb{C}, |P(z)| \ge |P(z_0)|$.

En effet:

On pose A = |P(0)| + 1

Il existe alors R tel que $\forall z \in \mathbb{C}, |z| \ge R \Rightarrow |P(z)| \ge A$

Par ailleurs, P est continu sur le compact $D_f(0,R)$ donc il existe $z_0 \in D_f(0,R)$ tel que $\forall z \in D_f(0,R), |P(z)| \ge |P(z_0)|$

Mais $0 \in D_f(0, R)$, donc $|P(0)| \ge |P(z_0)|$

Mais $\forall z \in \mathbb{C} \setminus D_f(0,R), |P(z)| \ge A \ge |P(0)|$

Donc $\forall z \in \mathbb{C}, |P(z)| \ge |P(z_0)|$

En remplaçant X par $X-z_0$, on peut supposer que $z_0=0$.

Soit $k \ge 1$ minimal tel que $a_k \ne 0$.

On a
$$P(z) = a_0 + a_k z^k + ...$$
 (et $a_0 = P(0)$)

On pose alors $z = \rho e^{i\theta}$

On a ainsi $a_0 + a_k z^k = a_0 + \rho^k a_k e^{ik\theta}$

On choisit $\theta = \theta_0$ tel que $Arg(a_k e^{ik\theta_0}) = \pi + Arg(a_0) [2\pi]$

Lorsque $\rho \to 0$,

$$|P(z)|^{2} = |a_{0} + \rho^{k} a_{k} e^{ik\theta_{0}} + O(\rho^{k+1})|^{2}$$
$$= |a_{0}|^{2} + 2\operatorname{Re}(a_{0} \rho^{k} \overline{a}_{k} e^{-ik\theta_{0}}) + O(\rho^{k+1})$$

Or, $a_0 \overline{a}_k e^{-ik\theta_0} = \lambda \in \mathbb{R}_+^*$ par définition de θ_0 .

Donc $|P(z)|^2 = |a_0|^2 + 2\lambda \rho^k + O(\rho^{k+1}) \le |a_0|^2$ pour ρ assez petit car $\lambda < 0$, ce qui est impossible.

• Théorème de division des fonctions C^k .

Soit I un intervalle de \mathbb{R} .

Soit $f: I \to \mathbb{C}$ de classe C^k $(k \ge 1)$, et $a \in I$

On pose alors
$$g(x) = \begin{cases} \frac{f(x) - f(a)}{x - a} & \text{si } x \neq a \\ f'(a) & \text{si } x = a \end{cases}$$

Alors g est de classe C^{k-1} .

Exemple:

$$f: x \mapsto \begin{cases} \frac{x}{\sin x} & \text{si } x \in]-\pi, \pi[\setminus\{0\}] \\ & \text{sin } x = 0 \end{cases} \text{ est de classe } C^{\infty} \text{ sur }]-\pi, \pi[.$$

En effet:

Avec la série entière, on a pour tout
$$x \ne 0$$
, $\frac{\sin x}{x} = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n}}{(2n+1)!}$

Donc $g: x \mapsto \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n}}{(2n+1)!}$ est de classe C^{∞} sur \mathbb{R} (la série a un rayon de

convergence infini) et prolonge $x \mapsto \frac{\sin x}{x}$.

Or,
$$\forall x \in]-\pi, \pi[, g(x) \neq 0]$$

Donc
$$f = \frac{1}{g}$$
 est de classe C^{∞} sur $-\pi, \pi$ [.

Ou, en utilisant le théorème :

$$g: x \mapsto \begin{cases} \frac{\sin x}{x} & \text{si } x \neq 0 \\ 1 & \text{si } x = 0 \end{cases}$$
 est de classe C^{∞} d'après le théorème de division, et comme

elle ne s'annule pas sur $-\pi, \pi[$, $f = \frac{1}{g}$ est de classe C^{∞} sur $-\pi, \pi[$.

Démonstration du théorème :

Astuce : pour tout $x \in I \setminus \{a\}$, on a :

$$g(x) = \frac{1}{x-a} \int_a^x f'(t)dt = \int_0^1 f'(ux + (1-u)a)du$$
, formule encore valable pour $x = a$.

Posons
$$h: I \times [0,1] \to \mathbb{C}$$

 $(x,u) \mapsto f'(ux + (1-u)a)$

Comme f est de classe C^k , h admet des dérivées selon x jusqu'à l'ordre k-1, et pour tout $j \le k-1$, $\frac{\partial^j h}{\partial x^j}(x,u) = u^j f^{(j+1)}(ux + (1-u)a)$.

De plus, pour $j \le k-1$ et tout compact $A \subset I$, $\frac{\partial^{j} h}{\partial x^{j}}$ est continue sur le compact $A \times [0,1]$ donc bornée.

Si on pose
$$M_{j,A} = \sup_{A \times [0,1]} \left| \frac{\partial^j h}{\partial x^j}(x,u) \right|$$
, la fonction $u \mapsto M_{j,A}$ est intégrable sur $[0,1]$.

Donc le théorème sur le caractère C^{k-1} des intégrales à paramètres s'applique, et donc g est de classe C^{k-1} (dérivable k-1 fois sous le signe intégral)

• Utilisation du calcul différentiel pour l'étude de $H(x) = \int_{u(x)}^{v(x)} f(x,t) dt$

On a déjà vu l'utilisation du changement de variables :

$$H(x) = (v(x) - u(x)) \int_0^1 f(x, t, v(x) + (1-t)u(x)) dt$$
, mais le calcul est compliqué...

Autre méthode:

On pose $F(u,v,x) = \int_{u}^{v} f(x,t)dt$ (pour u, v sur un domaine correct...)

Ainsi,
$$H(x) = F(u(x), v(x), x)$$
.

Si F est de classe C^1 (c'est-à-dire continue et admet des dérivées partielles elles mêmes continues par rapport à chacun des termes), alors H est de classe C^1 (en tant que fonction d'une variable), et :

$$H'(x) = u'(x)\frac{\partial F}{\partial u}(u(x), v(x), x) + v'(x)\frac{\partial F}{\partial v}(u(x), v(x), x) + \frac{\partial F}{\partial x}(u(x), v(x), x)$$

Ainsi:

Soit
$$f: I \times J \to \mathbb{C}$$
 de classe C^1 (c'est-à-dire que f , $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial t}$ existent et sont

globalement continues), $u, v: I \to \mathbb{C}$ tous deux de classe C^1 .

On pose
$$F: J \times J \times I \to \mathbb{C}$$
 et pour $x \in I, H(x) = F(u(x), v(x), x)$.
 $(u,v,x) \mapsto \int_{-\infty}^{v} f(x,t) dt$

Alors F est de classe C^1 , H aussi et :

$$\forall x \in I, H'(x) = v'(x)f(x, v(x)) - u'(x)f(x, u(x)) + \int_{u(x)}^{v(x)} \frac{\partial f}{\partial x}(x, t)dt$$

Démonstration:

On a déjà
$$\forall (u,v,x) \in J \times J \times I$$
, $F(u,v,x) = (v-u) \int_0^1 f(x,sv+(1-x)u) ds$

L'application $(x,u,v,s) \in I \times J \times J \times [0,1] \mapsto f(x,sv+(1-s)u)$ est continue et comme on est sur un segment (on a domination sur tout compact de $I \times J \times J$ par une fonction constante, donc continue et intégrable sur [0;1]...),

$$(x,u,v) \mapsto \int_0^1 f(x,sv+(1-s)u)ds$$
 est continue.

Dérivée selon u: on fixe x, v.

La fonction $t \mapsto f(x,t)$ est continue, donc l'application $u \mapsto \int_u^v f(x,t)dt$ est de classe C^1 (c'est une primitive de -f), de dérivée en u - f(x,u).

Donc
$$\frac{\partial F}{\partial u}$$
 existe, est continue, et $\forall (u, v, x) \in J \times J \times I, \frac{\partial F}{\partial u}(u, v, x) = -f(x, u)$

De même selon
$$v$$
, $\forall (u, v, x) \in J \times J \times I$, $\frac{\partial F}{\partial v}(u, v, x) = f(x, v)$

Selon x: on fixe u, v.

 $(x,t)\mapsto f(x,t)$ est continue, admet une dérivée $\frac{\partial f}{\partial x}$ elle-même continue.

Donc
$$\frac{\partial F}{\partial x}(u,v,x)$$
 existe et vaut $\int_{u}^{v} \frac{\partial f}{\partial x}(x,t)dt$.

Et de même qu'au début de la démonstration, $\frac{\partial F}{\partial x}$ est continue sur $J \times J \times I$.

IV Intégrales doubles sur $I \times I'$ de fonctions continues

A) Intégrabilité

Définition :

Soient I, I' deux intervalles de $\mathbb{R}, f: I \times I' \to \mathbb{C}$ globalement continue.

On dit que f est intégrable sur $I \times I'$ s'il existe $M \ge 0$ tel que pour tout segment [a,b] inclus dans I et tout segment [c,d] inclus dans I', on a

$$\int_{a}^{b} \left(\int_{c}^{d} |f(x,y)| dy \right) dx \le M$$

• Remarque importante :

f est intégrable si et seulement si |f| l'est.

D'après le théorème de Fubini sur un pavé ($[a,b] \times [c,d]$), on a pour f continue :

$$\int_{a}^{b} \left(\int_{c}^{d} |f(x,y)| dy \right) dx = \int_{c}^{d} \left(\int_{a}^{b} |f(x,y)| dx \right) dy$$

- Définition de $\iint_{I \times I'} f$:
- Si f est réelle positive :

Définition:

Si $f: I \times I' \to \mathbb{R}$ est continue, positive, intégrable, on pose :

$$\iint_{I \times I} f(x, y) dx dy = \sup_{[a,b] \times [c,d] \subset I \times I} \int_a^b \left(\int_c^d |f(x, y)| dy \right) dx$$
$$= \sup_{[a,b] \times [c,d] \subset I \times I} \int_c^d \left(\int_a^b |f(x, y)| dx \right) dy$$

- Si f est réelle :

Proposition:

Soit $f: I \times I' \to \mathbb{R}$ continue,

On pose $f^+: M \mapsto \max(f(M), 0)$ et $f^-: M \mapsto \max(-f(M), 0)$

Alors f^+ et f^- sont continues, et f est intégrable si et seulement si f^+ et f^- le sont.

On pose alors
$$\iint_{I \times I'} f = \iint_{I \times I'} f^+ - \iint_{I \times I'} f^-$$

- Complexe:

Soit $f: I \times I' \to \mathbb{C}$ continue. Alors Re(f) et Im(f) sont continues, et f est intégrable si et seulement si Re(f) et Im(f) le sont.

On pose alors
$$\iint_{I \times I'} f = \iint_{I \times I'} \operatorname{Re}(f) + i \iint_{I \times I'} \operatorname{Im}(f).$$

B) Calcul des intégrales

• A l'aide d'une suite exhaustive de pavés :

Théorème:

Soient I, I' deux intervalles de \mathbb{R} .

On suppose que I est la réunion croissante des segments $[a_n, b_n]$, c'est-à-dire que la suite $(a_n)_{n\in\mathbb{N}}$ est décroissante, la suite $(b_n)_{n\in\mathbb{N}}$ croissante et que $I=\bigcup_{n\in\mathbb{N}}[a_n,b_n]$

De même, on suppose que I' est la réunion croissante de segments $[c_n, d_n]$.

Alors pour toute fonction $f: I \times I' \to \mathbb{C}$ continue intégrable, on a :

$$\lim_{n\to+\infty}\int_{a_n}^{b_n}\int_{c_n}^{d_n}f(x,y)dydx = \lim_{n\to+\infty}\int_{c_n}^{d_n}\int_{a_n}^{b_n}f(x,y)dxdy = \iint_{I\times I}f(x,y)dxdy$$

Démonstration:

La démonstration est la même que pour les intégrales simples.

• Linéarité, positivité :

Théorème:

On note E l'ensemble des fonctions $f: I \times I' \to \mathbb{C}$ continues et intégrables.

Alors E est un sous-espace de $C^0(I \times I', \mathbb{C})$.

De plus, $f \in E \mapsto \iint_{I \times I^*} f$ est linéaire positive, c'est-à-dire que si $f \in E$ est positive, alors $\iint_{I \times I^*} f \ge 0$.

Démonstration:

Pour la positivité : c'est une borne supérieure de réels positifs.

Pour la linéarité : il suffit de calculer par les suites exhaustives de pavés.

• Cas simples:

Théorème:

Soient *I*, *I'* deux segments, disons I = [a,b] et I' = [c,d] et $f: I \times I' \to \mathbb{C}$ continue.

Alors f est intégrable sur $[a,b] \times [c,d]$, $[a,b] \times [c,d]$, $[a,b] \times [c,d]$... $[a,b] \times [c,d]$

Et toutes les intégrales sont égales.

On a de plus $\iint_{[a,b]\times[c,d]} f = \dots = \iint_{[a,b]\times[c,d]} f = \int_a^b \int_c^d f(x,y) dy dx = \int_c^d \int_a^b f(x,y) dx dy$.

C) Retour de Fubini

Théorème (admis):

Soit $f: I \times I' \to \mathbb{C}$ globalement continue.

On suppose que:

Pour tout $x \in I$, $y \in I' \mapsto f(x, y)$ est intégrable.

 $x \in I \mapsto \int_{\Gamma} f(x, y) dy$ est continue par morceaux intégrable sur *I*.

(1) Si f est à valeurs positives, alors f est intégrable sur $I \times I'$.

(2) Si f est intégrable (ce qui n'est pas assuré par l'hypothèse), alors :

$$\iiint_{x \in \Gamma} f(x, y) dx dy = \iiint_{\Gamma} f(x, y) dy dx$$

Remarque sur l'utilisation du théorème :

Sous les hypothèses, si f est positive, alors elle est intégrable et on peut calculer son intégrale. Si f est à valeurs réelles ou complexes, il faut d'abord appliquer (1) à |f| puis (2) à f.

D) Passage en coordonnées polaires

Théorème (admis):

(1) Soit $f:]0,+\infty[^2 \to \mathbb{C}$ continue.

On pose, pour $(r,\theta) \in]0,+\infty[\times]0,\frac{\pi}{2}[, g(r,\theta) = f(r\cos\theta,r\sin\theta)]$.

Alors g est continue, et f est intégrable si et seulement si g l'est, et dans ce cas :

$$\iint_{[0,+\infty[^2]} f(x,y) dx dy = \iint_{[0,+\infty[\times]0,\frac{\pi}{2}]} f(r\cos\theta, r\sin\theta) r dr d\theta$$

(2) On a un énoncé analogue pour $\mathbb{R} \times]0,+\infty[$ (où g est alors définie sur $[0,+\infty[\times]0,\pi[$), et pour \mathbb{R}^2 (g est alors définie sur $[0,+\infty[\times]0,2\pi[$)

Exemple:

Application à Γ :

Pour Re(z) > 0, on a
$$\Gamma(z) = \int_0^{+\infty} e^{-t} t^{z-1} dt = 2 \int_0^{+\infty} e^{-x^2} x^{2z-1} dx$$

(L'application $t \mapsto t^2$ est un C^1 -difféomorphisme de $[0,+\infty[$ dans $[0,+\infty[$)

Par exemple, $\Gamma(1/2) = 2 \int_0^{+\infty} e^{-x^2} dx$.

On considère $f(x, y) = e^{-x^2 - y^2}$.

Alors f est continue sur \mathbb{R}^2_+ . Pour tout $y \in \mathbb{R}_+$, l'application $x \in \mathbb{R}_+ \mapsto f(x,y)$ est continue et intégrable car $f(x,y) = O(1/x^2)$

De plus,
$$\int_0^{+\infty} f(x, y) dx = e^{-y^2} \int_0^{+\infty} e^{-x^2} dx = Ge^{-y^2}$$
.

Et $y \mapsto Ge^{-y^2}$ est continue, intégrable.

Donc f est intégrable sur \mathbb{R}^2_+ , et $\iint_{[0,+\infty]^2} f(x,y) dx dy = G^2$.

Par ailleurs, sur $[0,+\infty[^2$, on peut passer en coordonnées polaires :

Ainsi, $(r,\theta) \in]0,+\infty[\times]0,\frac{\pi}{2}[\mapsto e^{-r^2}r$ est continue et intégrable, et d'après le théorème de Fubini,

$$\iint_{]0,+\infty[\times]0,\frac{\pi}{2}[} e^{-r^2} r dr d\theta = \int_0^{+\infty} \left(\int_0^{\frac{\pi}{2}} e^{-r^2} r d\theta \right) dr = \frac{\pi}{2} \int_0^{+\infty} r e^{-r^2} dr = \frac{\pi}{4} \left[-e^{-r^2} \right]_0^{+\infty} = \frac{\pi}{4}$$

Donc
$$G = \frac{\sqrt{\pi}}{2}$$
.

Soient $z, z' \in \mathbb{R}_+^*$.

On a:
$$\Gamma(z) = 2 \int_0^{+\infty} e^{-x^2} x^{2z-1} dx$$
, $\Gamma(z') = 2 \int_0^{+\infty} e^{-y^2} y^{2z'-1} dy$.

On cherche à calculer $\Gamma(z)\Gamma(z')$.

On pose, pour
$$x, y > 0$$
, $f(x, y) = e^{-x^2 - y^2} x^{2z-1} y^{2z'-1}$

Alors f est continue sur \mathbb{R}_{+}^{*2} .

Pour tout y > 0, $x \mapsto f(x, y)$ est intégrable.

En effet, en
$$+\infty$$
, $x^2 f(x, y) \xrightarrow[x \to +\infty]{} 0$

Et en 0,
$$|f(x,y)| \underset{x\to 0}{\sim} c(y)x^{2\operatorname{Re}(z)-1}$$

De plus, pour $y \in]0,+\infty[$, $\int_{]0,+\infty[} f(x,y)dx = e^{-y^2}y^{2z'-1} \int_0^{+\infty} e^{-x^2}x^{2z-1}dx = \Gamma(z)g(y)$, où g est continue intégrable sur $]0,+\infty[$.

Donc f est intégrable sur \mathbb{R}_{+}^{*2}

On a de plus:

$$\iint_{\mathbb{R}_{+}^{*2}} f(x,y) dx dy = \int_{0}^{+\infty} \left(\int_{0}^{+\infty} f(x,y) dx \right) dy = \int_{0}^{+\infty} \Gamma(z) g(y) dy = \Gamma(z) \Gamma(z')$$

Passage en polaire :

Comme f est intégrable, $(r,\theta) \in]0,+\infty[\times]0,\frac{\pi}{2}[\mapsto e^{-r^2}(r\cos\theta)^{2z-1}(r\sin\theta)^{2z-1}r$ est continue et intégrable, et :

$$\iint_{\mathbb{R}_{+}^{*2}} f(x,y) dx dy = \iint_{[0,+\infty[\times]0,\frac{\pi}{2}[} e^{-r^2} r^{2z+2z'-1} (\cos\theta)^{2z-1} (\sin\theta)^{2z'-1} dr d\theta$$

On pose $g(r,\theta) = e^{-r^2} r^{2z+2z'-1} (\cos \theta)^{2z-1} (\sin \theta)^{2z'-1}$.

Ainsi, g est continue, et pour tout $\theta \in [0, \frac{\pi}{2}[$, $r \mapsto g(r, \theta)$ est intégrable et

$$\int_0^{+\infty} g(r,\theta) dr = \frac{1}{2} \Gamma(z+z') (\cos \theta)^{2z-1} (\sin \theta)^{2z'-1}$$

De plus, $h: \theta \mapsto \frac{1}{2}\Gamma(z+z')(\cos\theta)^{2z-1}(\sin\theta)^{2z'-1}$ est continue, intégrable.

En effet, en 0 on a $|h(\theta)| \sim |\theta^{2z'-1}|$, intégrable.

Et en $\frac{\pi}{2}$, $|h(\theta)| \sim \left| \left(\frac{\pi}{2} - \theta \right)^{2z-1} \right|$, aussi intégrable.

Donc d'après le théorème de Fubini,

$$\iint_{[0,+\infty[\times]0,\frac{\pi}{2}]} g(r,\theta) dr d\theta = \int_0^{\frac{\pi}{2}} \int_0^{+\infty} g(r,\theta) dr d\theta.$$

Donc
$$\Gamma(z)\Gamma(z') = 4\iint_{\mathbb{R}^{*2}_+} f(x, y) dx dy = 2\left(\int_0^{\frac{\pi}{2}} (\cos \theta)^{2z-1} (\sin \theta)^{2z'-1} d\theta\right) \Gamma(z+z')$$

Définition :

Pour z, z' complexes de partie réelle strictement positive,

On pose
$$\beta(z, z') = 2 \int_0^{\frac{\pi}{2}} (\cos \theta)^{2z-1} (\sin \theta)^{2z'-1} d\theta$$
.

Le changement de variable $u = \cos^2 \theta$, C^1 -difféomorphisme de $\left[0, \frac{\pi}{2}\right[$ dans $\left[0, 1\right[$, nous donne même

$$\beta(z, z') = 2 \int_0^{\frac{\pi}{2}} (\cos^2 \theta)^{z-1} (\sin^2 \theta)^{z'-1} \sin \theta \cos \theta d\theta$$
$$= \int_0^1 t^{z-1} (1-t)^{z'-1} dt$$

On a donc la formule d'Euler pour $z, z' \in \mathbb{R}^*_+$:

$$\Gamma(z)\Gamma(z') = \Gamma(z+z')\beta(z,z')$$

Exemple:

$$\int_0^1 t^{3/2} (1-t)^5 dt = \beta(5/2,6) = \frac{\Gamma(6)\Gamma(5/2)}{\Gamma(17/2)} = 5 \times \frac{\Gamma(5/2)}{(\frac{17}{2}-1)...\Gamma(\frac{5}{2})} = \frac{5!}{(\frac{17}{2}-1)...(\frac{5}{2})}$$

Exercice:

Soit $z \in \mathbb{R}$ tel que 0 < z < 1.

On cherche à calculer $\Gamma(z)\Gamma(1-z)$, c'est-à-dire $\beta(z,1-z) = \int_0^1 t^{z-1} (1-t)^{-z} dt$

On pose
$$\varphi(\alpha) = \int_0^{+\infty} \frac{u^{\alpha - 1}}{u + 1} du$$

Le changement de variable $t = \frac{u}{1+u}$, $dt = \frac{du}{(1+u)^2}$, C^1 -difféomorphisme, dans

$$\beta(z,1-z)$$
 donne $\beta(z,1-z) = \int_0^{+\infty} \frac{u^{z-1}}{(1+u)^{z-1}} \frac{1}{(1+u)^{-z}} \frac{du}{(1+u)^2} = \int_0^{+\infty} \frac{u^{z-1}}{1+u} du = \varphi(z)$.

On va calculer $\varphi(z)$.

Rappel:

Pour $f \in \mathbb{C}(X)$ tel que $\deg f \leq -2$ et sans pôle réel, f est continue intégrable sur \mathbb{R} et $\int_{\mathbb{R}} f(t)dt = i\pi. \sum_{\alpha \in \mathbb{C}} \mathrm{Res}(f,\alpha)$. En effet :

Définition

Résidu de $f \in \mathbb{K}(X)$ en $a \in \mathbb{K}$: c'est le coefficient de $\frac{1}{X-a}$ dans la décomposition en f en éléments simples, éventuellement nul.

Ainsi, si
$$f = \frac{P}{Q}$$
 et a est pôle seulement simple de f , on a $Res(f, a) = \frac{P(a)}{Q'(a)}$

Ainsi, pour tout $z_0 \in \mathbb{C} \setminus \mathbb{R}$ et $A \ge 0$:

$$\begin{split} \int_{-A}^{A} \frac{dt}{t - z_0} &= \left[\ln\left|t - z_0\right| + i\operatorname{Arctan}\left(\frac{t - \operatorname{Re}(z_0)}{\operatorname{Im}(z_0)}\right)\right]_{-A}^{A} \\ &= \ln\frac{\left|A - z_0\right|}{\left|-A - z_0\right|} + i\left(\operatorname{Arctan}\left(\frac{A - \operatorname{Re}(z_0)}{\operatorname{Im}(z_0)}\right) - \operatorname{Arctan}\left(\frac{-A - \operatorname{Re}(z_0)}{\operatorname{Im}(z_0)}\right)\right) \end{split}$$

$$\operatorname{Mais} \ \lim_{A \to +\infty} \ln \frac{\left| A - z_0 \right|}{\left| - A - z_0 \right|} = 0 \ , \ \operatorname{et} \ \lim_{A \to +\infty} \operatorname{Arctan} \left(\frac{A - \operatorname{Re}(z_0)}{\operatorname{Im}(z_0)} \right) = \operatorname{sgn}(\operatorname{Im}(z_0)) \frac{\pi}{2} \ ,$$

$$\lim_{A \to \infty} \operatorname{Arctan} \left(\frac{-A - \operatorname{Re}(z_0)}{\operatorname{Im}(z_0)} \right) = -\operatorname{sgn}(\operatorname{Im}(z_0)) \frac{\pi}{2}$$

Donc
$$\lim_{A\to+\infty}\int_{-A}^{A}\frac{dt}{t-z_0}=i\operatorname{sgn}(\operatorname{Im}(z_0))\pi$$
, c'est-à-dire $\int_{-\infty}^{+\infty}\frac{dt}{t-z_0}=i\operatorname{sgn}(\operatorname{Im}(z_0))\pi$

(Mais
$$t \mapsto \frac{1}{t - z_0}$$
 n'est pas intégrable sur \mathbb{R})

Pour
$$n \ge 2$$
, $t \mapsto \frac{1}{(t-z_0)^n}$ est intégrable sur \mathbb{R} $(z_0 \in \mathbb{C} \setminus \mathbb{R})$, et :

$$\int_{-\infty}^{+\infty} \frac{dt}{(t-z_0)^n} = 0$$

Calculer $\int_0^{+\infty} \frac{x^{2m}}{1+x^{2n}} dx$ pour n < m, et en déduire $\varphi(z)$ pour $z \in]0,1[$

On a:

$$\int_0^{+\infty} \frac{x^{2m}}{1+x^{2n}} dx = \frac{1}{2} \int_{-\infty}^{+\infty} \frac{x^{2m}}{1+x^{2n}} dx = i\pi. \sum_{\substack{\alpha \in \mathbb{C} \\ Im(\alpha) > 0}} Res(f, \alpha) \text{ où } f = \frac{X^{2m}}{1+X^{2n}}$$

Pôles de f:

Ce sont les
$$\omega_k = e^{\frac{i\pi + 2k\pi}{2n}}$$
 pour $k \in [0, 2n - 1]$

On a
$$\operatorname{Im}(\omega_k) \Leftrightarrow 0 \le k \le n-1$$
, et $\operatorname{Res}(f, \omega_k) = \frac{\omega_k^{2m}}{2n\omega_k^{2n-1}} = \frac{-\omega_k^{2m+1}}{2n}$

Donc
$$\int_0^{+\infty} f(x)dx = \frac{-i\pi}{2n} \sum_{k=0}^{n-1} e^{i\frac{2k+1}{2n} \cdot (2m+1)\pi} = \frac{-i\pi}{2n} e^{i\frac{2m+1}{2n}\pi} \frac{1 - e^{i(2m+1)\pi}}{1 - e^{i\frac{2m+1}{n}\pi}} \quad (e^{i\frac{2m+1}{n}\pi} \neq 1)$$

Soit
$$\int_0^{+\infty} f(x) dx = \frac{-i\pi}{n} \times \frac{1}{-2i\sin(\frac{2m+1}{2n}\pi)} = \frac{\pi}{2n\sin(\frac{2m+1}{2n}\pi)}$$

Or, le changement de variable $u = x^{2n}$ donne :

$$\int_0^{+\infty} \frac{x^{2m}}{1+x^{2n}} dx = \int_0^{+\infty} \frac{u^{m/n}}{1+u} \frac{1}{2n} u^{\frac{1}{2n}-1} du = \frac{1}{2n} \int_0^{+\infty} \frac{u^{\frac{2m+1}{2n}-1}}{1+u} du$$

Ainsi, pour
$$0 \le m < n$$
, $\varphi\left(\frac{2m+1}{2n}\right) = \frac{\pi}{\sin\left(\frac{2m+1}{2n}\pi\right)}$.

Théorème:

$$\forall x \in]0;1[, \int_0^{+\infty} \frac{u^{x-1}}{1+u} du = \frac{\pi}{\sin \pi . x}$$

Corollaire

On a la formule des compléments :

$$\forall x \in]0;1[,\beta(x,1-x) = \frac{\Gamma(x)\Gamma(1-x)}{\Gamma(1)} = \frac{\pi}{\sin \pi . x}$$

Démonstration:

$$g(x,u) = \frac{u^{x-1}}{1+u}$$
, définie sur $]0;1[\times \mathbb{R}_+^*]$

Alors pour tout $u \in \mathbb{R}_+^*$, $x \mapsto g(x,u)$ est continue sur $x \mapsto g(x,u)$.

Pour tout $x \in]0;1[$, $u \mapsto g(x,u)$ est continue par morceaux sur \mathbb{R}_+^* .

Soit $K = [a, b] \subset]0;1[$

Alors
$$\forall x \in K, |g(x,u)| = \frac{e^{(x-1)\ln u}}{1+u} \le \varphi_{[a,b]}(u) = \begin{cases} \frac{e^{(b-1)\ln u}}{1+u} & \text{si } u \ge 1\\ \frac{e^{(a-1)\ln u}}{1+u} & \text{si } u \le 1 \end{cases}$$

Mais $\varphi_{[a,b]}$ est continue et intégrable. Donc $x \mapsto \int_0^{+\infty} \frac{u^{x-1}}{1+u} du$ est continue sur]0;1[.

On va montrer maintenant la densité de $\left\{\frac{2m+1}{2n}, (m,n) \in \mathbb{N}^2 \text{ et } n < m\right\}$ dans]0;1[.

Soit U un intervalle ouvert de]0;1[, disons U =]a,b[.

Montrons qu'il existe $(n,m) \in \mathbb{N}^2$ tel que $0 \le n < m$ et $a < \frac{2m+1}{2n} < b$, ce qui établira le résultat. On a en effet les équivalences :

$$a < \frac{2m+1}{2n} < b \Leftrightarrow 2na < 2m+1 < 2nb \Leftrightarrow na - \frac{1}{2} < m < nb - \frac{1}{2}$$

Soit alors $n \in \mathbb{N}$ tel que $n > \frac{1}{b-a}$.

Alors $na - \frac{1}{2}$, $nb - \frac{1}{2}$ est de longueur strictement plus grande que 1, donc contient un entier m, à savoir par exemple $E(nb - \frac{1}{2})$ si $nb - \frac{1}{2} \notin \mathbb{Z}$ ou $nb - \frac{3}{2}$ si $nb - \frac{1}{2} \in \mathbb{Z}$.

Et on a ainsi $a < \frac{2m+1}{2n} < b$. D'où la densité de l'ensemble, et le résultat sur]0;1[par continuité de l'application.