Ce document est mis à disposition selon les termes de la licence Creative Commons « Attribution – Partage dans les mêmes conditions 4.0 International ». https://www.immae.eu/cours/

Chapitre 2 : Séries numériques

On fixe dans ce chapitre le corps $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

I Généralités

A) Suites et séries

Définition:

On appelle série à termes dans \mathbb{K} tout couple $((u_n)_{n\in\mathbb{N}}, (S_n)_{n\in\mathbb{N}})$ de suites de \mathbb{K} tel que $\forall n\in\mathbb{N}, S_n = \sum_{k=0}^n u_k$.

On appelle u_n le n-ième terme général de la série et S_n la n-ième somme partielle.

Remarque:

La donnée du terme général u_n suffit à déterminer la suite, qu'on notera alors $\sum_{n\geqslant 0}u_n$.

Remarque:

Si $(u_n)_{n \ge n_0}$ est une suite définie à partir d'un rang n_0 , on notera $\sum_{n \ge n_0} u_n$ la série de terme général

$$v_n = \begin{cases} 0 & \text{si } n < n_0 \\ u_n & \text{si } n \geqslant n_0 \end{cases}$$

La *n*-ième somme partielle vaut alors $S_n = \sum_{k=n_0}^n u_k$ pour $n \ge n_0$.

Proposition:

L'ensemble des séries à termes dans K est muni d'une structure d'espace vectoriel par les lois :

$$\lambda \sum_{n \geqslant 0} u_n + \mu \sum_{n \geqslant 0} v_n = \sum_{n \geqslant 0} \lambda u_n + \mu v_n \text{ où } (\lambda, \mu) \in \mathbb{K}^2 \text{ et } (u, v) \in (\mathbb{K}^{\mathbb{N}})^2$$
 (2.1)

On notera cet ensemble $S(\mathbb{K})$

Démonstration:

$$S(\mathbb{K})$$
 est un sous-espace vectoriel de $(\mathbb{K}^{\mathbb{N}})^2$, noyau de l'application linéaire $(\mathbb{K}^{\mathbb{N}})^2 \longrightarrow \mathbb{K}^{\mathbb{N}}$

$$(u,S) \longmapsto \left(S_n - \sum_{k=0}^n u_k\right)_{n \in \mathbb{N}}$$

B) Séries convergentes

Définition:

On dit que la série $\sum_{n\geqslant 0}u_n$, à termes dans \mathbb{K} , est convergente lorsque la suite $(\sum_{k=0}^nu_k)_{n\in\mathbb{N}}$ converge. On notera alors $S=\sum_{n=0}^{+\infty}u_n=\lim_{k\to+\infty}\sum_{k=0}^nu_k$.

Attention: La notation $\sum_{n=0}^{+\infty}u_n$ n'a de sens que pour une série convergente.

Remarque:

On notera $\sum_{n=n_0}^{+\infty} u_n$ la somme d'une série convergente $\sum_{n\geqslant n_0} u_n$.

Théorème:

Soient $(u_n)_{n\in\mathbb{N}}\in\mathbb{K}^{\mathbb{N}}$ et $n_0\in\mathbb{N}$.

Alors les séries $\sum_{n\geqslant 0}u_n$ et $\sum_{n\geqslant n_0}u_n$ ont la même nature, et si elles convergent, on a :

$$\sum_{n=0}^{+\infty} u_n = \sum_{n=n_0}^{+\infty} u_n + \sum_{k=0}^{n_0 - 1} u_k$$
 (2.2)

Démonstration:

Soient S_n et S_n' les n-ièmes sommes partielles de $\sum_{n\geqslant 0}u_n$ et $\sum_{n\geqslant n_0}u_n$.

Pour $n \ge n_0$, on a:

$$S_n = \sum_{k=0}^n u_k = \sum_{k=0}^{n_0 - 1} u_k + \sum_{k=n_0}^n u_k = \sum_{k=0}^{n_0 - 1} u_k + S_n'$$
(2.3)

Donc les deux suites $(S_n)_{n\in\mathbb{N}}$ et $(S'_n)_{n\in\mathbb{N}}$ on la même nature, et si elles convergent, on a alors $\lim_{n\to+\infty} S_n = \sum_{k=0}^{n_0-1} u_k + \lim_{n\to+\infty} S'_n$.

Définition

Si $\sum_{n\geqslant 0} u_n$ est une série convergente, on appelle *n*-ième reste de Cauchy de la série le scalaire $R_n = \sum_{k=n+1}^{+\infty} u_k$.

Proposition:

Le reste de Cauchy, lorsqu'il existe, tend vers 0

En effet : Si $\sum_{n\geq 0} u_n$ est une série convergente, soit S_n sa n-ième somme partielle, et S sa somme. On alors, pour tout $n\in\mathbb{N},\,S=S_n+R_n$.

Comme
$$S_n \xrightarrow[n \to +\infty]{} S$$
, on a bien $R_n \xrightarrow[n \to +\infty]{} 0$.

Exemple:

Soit $\sum_{n\geqslant 1} u_n$ la série de terme général $u_n = \frac{1}{n(n+1)}$.

On a :
$$\forall n \in \mathbb{N}^*, u_n = \frac{1}{n} - \frac{1}{n+1}$$
.

Donc
$$\forall n \in \mathbb{N}^*, \sum_{k=1}^n u_k = \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1}\right) = 1 - \frac{1}{n+1}.$$

La série est donc convergente, de somme $\sum_{n=1}^{+\infty} u_n = 1$

Le *n*-ième terme de Cauchy vaut alors $\frac{1}{n+1}$.

Proposition:

Si $(u_n)_{n\in\mathbb{N}}\in\mathbb{K}^{\mathbb{N}}$, alors u converge si et seulement si la série $\sum_{n\geqslant 0}u_n-u_{n+1}$ converge, et on a alors $\sum_{n=0}^{+\infty}u_n-u_{n+1}=u_0-\lim_{n\to+\infty}u_n$

Démonstration:

$$\sum_{k=0}^{n} u_k - u_{k+1} = u_0 - u_{n+1}.$$

Attention : On ne peut pas écrire $\sum_{k=0}^{+\infty} u_k - u_{k+1} = \sum_{k=0}^{+\infty} u_k - \sum_{k=0}^{+\infty} u_{k+1}$ (voir exemple précédent par exemple)

Théorème:

L'ensemble $S_C(\mathbb{K})$ des séries convergentes à termes dans \mathbb{K} est un sous-espace vectoriel de $S(\mathbb{K})$. L'application $S_C(\mathbb{K}) \longrightarrow \mathbb{K}$ est une forme linéaire.

$$\sum_{n\geqslant 0} u_n \quad \longmapsto \quad \sum_{n=0}^{+\infty} u_n$$

Démonstration:

Résulte du théorème équivalent sur les suites :

Pour $n \in \mathbb{N}$, $\sum_{k=0}^{n} (\lambda u_k + \mu v_k) = \lambda \sum_{k=0}^{n} u_k + \mu \sum_{k=0}^{n} v_k$, d'où, par passage à limite si les séries $\sum_{n \geqslant 0} u_n$ et $\sum_{n \geqslant 0} v_n$ convergent, $\sum_{k=0}^{+\infty} (\lambda u_k + \mu v_k) = \lambda \sum_{k=0}^{+\infty} u_k + \mu \sum_{k=0}^{+\infty} v_k$.

C) Grossière divergence

Théorème:

Si la série $\sum_{n\geq 0} u_n$ converge, alors son terme général u_n tend vers 0.

Démonstration:

Pour tout $n \in \mathbb{N}^*$, $u_n = \sum_{k=0}^n u_k - \sum_{k=0}^{n-1} u_k$.

Donc
$$\lim_{n \to +\infty} u_n = \sum_{k=0}^{+\infty} u_k - \sum_{k=0}^{+\infty} u_k = 0.$$

Conséquence:

Si $(u_n)_{n\in\mathbb{N}}$ est une suite ne tendant pas vers 0, alors la série $\sum_{n\geqslant 0}u_n$ diverge. On dit dans ce cas que la série $\sum_{n\geqslant 0}u_n$ est grossièrement divergente.

Exemples

• Série grossièrement divergente :

$$\sum_{n\geqslant 0} (-1)^n \tag{2.4}$$

• Série non grossièrement divergente mais divergente :

$$\sum_{n\geq 1} \frac{1}{n} \tag{2.5}$$

Idée:

$$\sum_{k=1}^{n} \frac{1}{k} = 1 + \underbrace{\frac{1}{2}}_{\geqslant \frac{1}{2}} + \underbrace{\left(\frac{1}{3} + \frac{1}{4}\right)}_{\geqslant 2 \times \frac{1}{2}} + \underbrace{\left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right)}_{\geqslant 4 \times \frac{1}{3}} + \cdots$$
(2.6)

Plus formellement:

$$\sum_{k=1}^{2^{n}-1} \frac{1}{k} = \sum_{m=0}^{n-1} \left(\frac{1}{2^{m}} + \frac{1}{2^{m+1}} + \dots + \frac{1}{2^{m+1}-1} \right)$$
(2.7)

La suite $\left(\frac{1}{n}\right)_{n\in\mathbb{N}^*}$ est décroissante, donc :

$$\sum_{k=1}^{2^{n}-1} \frac{1}{k} \geqslant \sum_{m=0}^{n-1} 2^{m} \times \frac{1}{2^{m+1}} \geqslant n \times \frac{2^{m}}{2^{m+1}} \geqslant \frac{n}{2}$$
 (2.8)

Donc $S_{2^{m-1}} \xrightarrow[n \to +\infty]{} +\infty$. De plus, $u_n \ge 0$. Donc $(S_n)_{n \in \mathbb{N}^*}$ est croissante, donc $S_n \xrightarrow[n \to +\infty]{} +\infty$, donc $\sum_{n \ge 1} \frac{1}{n}$ diverge.

D) Critère de Cauchy – convergence absolue

Théorème (critère de Cauchy):

Si $\sum_{n\geqslant 0} u_n$ est une série de \mathbb{K} , alors une condition nécessaire et suffisante pour que cette série converge est :

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall (n, p) \in \mathbb{N}^2, n \geqslant n_0 \implies \left| \sum_{k=n+1}^{n+p} u_k \right| \leqslant \varepsilon$$
 (2.9)

Démonstration:

Cette condition équivaut à : $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall (n,p) \in \mathbb{N}^2, n \geqslant n_0 \implies |S_{n+p} - S_n| \leqslant \varepsilon$ (où $S_n = \sum_{k=0}^n u_k$)

C'est-à-dire à « $(S_n)_{n\in\mathbb{N}}$ est de Cauchy », ce qui équivaut dans \mathbb{K} à dire que $(S_n)_{n\in\mathbb{N}}$ converge.

Remarque:

On note souvent $R_{n,p} = \sum_{k=n+1}^{n+p} u_k$ le « reste partiel » de la série.

Théorème:

Si $\sum_{n\geqslant 0}u_n$ est une série de \mathbb{K} , alors une condition suffisante pour que $\sum_{n\geqslant 0}u_n$ converge est que $\sum_{n\geqslant 0}|u_n|$ converge.

Démonstration:

Si $\sum_{n\geqslant 0} |u_n|$ converge, alors par critère de Cauchy, pour tout $\varepsilon > 0$, il existe $n_0 \in \mathbb{N}$ tel que $n\geqslant n_0 p \in \mathbb{N}$

 $\left|\sum_{k=n+1}^{n+p} u_k\right| \leqslant \varepsilon$. Donc $\sum_{n\geqslant 0} u_n$ converge.

Définition:

Si la série $\sum_{n\geq 0} |u_n|$ converge, on dit que la série $\sum_{n\geq 0} u_n$ est absolument convergente.

Si $\sum_{n\geq 0} u_n$ est convergente, mais pas absolument, on dit alors qu'elle est semi-convergente.

II Séries à termes réels positif

A) Théorème fondamental

Théorème:

Soit $\sum_{n\geqslant 0}u_n$ une série à termes réels positifs. Alors la série converge si et seulement si il existe $M\geqslant 0$ tel que $\forall n\in\mathbb{N}, \sum_{k=0}^nu_k\leqslant M$.

Démonstration:

La suite $(\sum_{k=0}^{n} u_k)_{n\in\mathbb{N}}$ est croissante, donc converge si et seulement si elle est majorée.

Corollaire:

Si $\sum_{n\geq 0} u_n$ est une série à termes réels positifs divergente, alors $\sum_{k=0}^n u_k \xrightarrow[n\to+\infty]{} +\infty$.

B) Critères de comparaison

Théorème (comparaison):

Si $\sum_{n\geqslant 0} u_n$ et $\sum_{n\geqslant 0} v_n$ sont à termes réels positifs, si $\forall n\in\mathbb{N}, u_n\leqslant v_n$ et si $\sum_{n\geqslant 0} v_n$ converge, alors $\sum_{n\geqslant 0} u_n$ converge, et $\sum_{n=0}^{+\infty} u_n\leqslant \sum_{n=0}^{+\infty} v_n$.

Démonstration:

Supposons que $\forall n \in \mathbb{N}, u_n \leq v_n$ et que $\sum_{n \geq 0} v_n$ converge.

Il existe alors M tel que $\forall n \in \mathbb{N}, \sum_{k=0}^{n} v_k \leq M$.

Ainsi, $\forall n \in \mathbb{N}, \sum_{k=0}^{n} u_k \leq \sum_{k=0}^{n} v_k \leq M$. Or, $\sum_{n \geq 0} u_n$ est croissante.

Donc elle converge, et par passage à la limite, $\sum_{n=0}^{+\infty} u_n \leqslant \sum_{n=0}^{+\infty} v_n$.

Conséquence:

Avec les notations précédentes, et pour $n_0 \in \mathbb{N}$,

Si $\forall n \geq n_0, u_n \leq v_n$ et si $\sum_{n \geq 0} v_n$ converge, alors $\sum_{n \geq 0} u_n$ converge, et $\sum_{n=n_0}^{+\infty} u_n \leq \sum_{n=0}^{+\infty} v_n$.

En effet : Les séries $\sum_{n\geqslant 0} v_n$ et $\sum_{n\geqslant n_0} v_n$ ont même nature.

Conséquence:

Avec les notations du théorème, et pour $n_0 \in \mathbb{N}$, si $\forall n \geq n_0, u_n \leq v_n$ et si $\sum_{n \geq 0} u_n$ diverge, alors $\sum_{n \geq 0} v_n$ diverge.

C'est la contraposée de la première conséquence.

Théorème (Domination):

Soit $\sum_{n\geqslant 0} u_n$ une série à termes dans \mathbb{K} , et $\sum_{n\geqslant 0} \alpha_n$ une série à termes réels positifs.

Si $u_n = 0$ α_n , et si $\sum_{n \ge 0} \alpha_n$ converge, alors $\sum_{n \ge 0} u_n$ est absolument convergente.

Démonstration:

Si $u_n = O(\alpha_n)$, alors il existe $n_0 \in \mathbb{N}$ et $A \in \mathbb{R}_+^*$ tels que $\forall n \ge n_0, |u_n| \le A\alpha_n$.

Si de plus $\sum_{n\geqslant 0} \alpha_n$ converge, alors $\sum_{n\geqslant 0} A\alpha_n$ converge, et donc $\sum_{n\geqslant 0} |u_n|$ converge.

Corollaire:

Avec les notations du théorème,

Si $u_n = O(\alpha_n)$, et si $\sum_{n \ge 0} u_n$ diverge, alors $\sum_{n \ge 0} \alpha_n$ diverge.

Le théorème reste valable en remplaçant O par o.

Théorème (Équivalence) :

Soit $\sum_{n\geqslant 0} u_n$ une suite à termes dans \mathbb{R} , et $\sum_{n\geqslant 0} v_n$ à termes réels positifs.

Si $u_n \underset{n \to +\infty}{\sim} v_n$, alors les séries $\sum_{n \geqslant 0} v_n$ et $\sum_{n \geqslant 0} u_n$ ont même nature.

Démonstration :

Posons, pour $n \in \mathbb{N}$, $w_n = u_n - v_n$.

Ainsi, $u_n \underset{n \to +\infty}{\sim} v_n \iff w_n \underset{n \to +\infty}{=} o(u_n)$

Il existe donc $n_0 \in \mathbb{N}$ tel que $\forall n \geq n_0, \forall n \geq n_0, |w_n| \leq \frac{1}{2}u_n$.

Donc, pour $n \ge n_0$, $0 \le \frac{1}{2}u_n \le v_n \le \frac{3}{2}u_n$.

Donc $\sum_{n\geqslant 0} u_n$ et $\sum_{n\geqslant 0} v_n$ ont même nature.

Théorème (Comparaison logarithmique):

Soient $\sum_{n\geq 0} u_n$ et $\sum_{n\geq 0} v_n$ deux séries à termes réels strictement positifs, et $n_0 \in \mathbb{N}$.

Si
$$\forall n \geqslant n_0, \frac{u_{n+1}}{u_n} \leqslant \frac{v_{n+1}}{v_n}$$
 et $\sum_{n \geqslant 0} v_n$ converge, alors $\sum_{n \geqslant 0} u_n$ converge.

Démonstration:

Si $\forall n \geqslant n_0, \frac{u_{n+1}}{u_n} \leqslant \frac{v_{n+1}}{v_n}$, alors par récurrence immédiate $\forall n \geqslant n_0, \frac{u_n}{u_{n_0}} \leqslant \frac{v_n}{v_{n_0}}$.

Ainsi,
$$u_n = O(v_n)$$
, d'où le résultat.

Corollaire:

Avec les notations du théorème,

Si
$$\forall n \geqslant n_0, \frac{u_n}{u_{n_0}} \leqslant \frac{v_n}{v_{n_0}}$$
 et si $\sum_{n \geqslant 0} u_n$ diverge, alors $\sum_{n \geqslant 0} v_n$ diverge.

C) Suites géométriques, règle de d'Alembert

Rappel:

Calcul des sommes partielles.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison $k\neq 1$. Alors $\sum_{n=p}^q u_n = \frac{u_p - u_{q+1}}{1-k}$.

Théorème:

Soit $k \in \mathbb{R}_+^*$. La série $\sum_{n \ge 0} k^n$ converge si et seulement si k < 1.

Théorème:

Soit $z \in \mathbb{C}$. La série $\sum_{n \ge 0} z^n$ converge si et seulement si |z| < 1, et on a alors $\sum_{n=0}^{+\infty} z^n = \frac{1}{1-z}$.

Démonstration (du deuxième théorème):

- Si z = 1, alors $\sum_{k=0}^{n} z^k = n + 1$, donc la série diverge.
- Sinon, $\sum_{k=0}^{n} z^k = \frac{1-z^{n+1}}{1-z}$.

Ainsi, si |z|>1, la série ne converge pas car $\left|\sum_{k=0}^n z^k\right|\to +\infty$.

Si |z|<1, la série converge, de somme $\frac{1}{1-z}$

Si $|z|=1,\,z=e^{i\theta}$ où $\theta\in\mathbb{R}\setminus2\pi\mathbb{Z}$, et la suite $(e^{in\theta})_{n\in\mathbb{N}}$ ne converge pas $(\operatorname{car}\,\theta\not\equiv0\mod2\pi)$

Autre méthode Si |z|=1, alors $\forall n \in \mathbb{N}, |z^n|=1$, donc $\sum_{n\geqslant 0} z^n$ est grossièrement divergente.

Théorème :

Soit $\sum_{n\geqslant 0} u_n$ une série à termes réels strictement positifs.

- 1. S'il existe $k\in]0,1[$ tel que $\forall n\in \mathbb{N},\frac{u_{n+1}}{u_n}\leqslant k,$ alors $\sum_{n\geqslant 0}u_n$ converge
- 2. S'il existe $k \in [1, +\infty[$ tel que $\forall n \in \mathbb{N}, \frac{u_{n+1}}{u_n} \geqslant k,$ alors $\sum_{n \geqslant 0} u_n$ diverge.

Démonstration:

- 1. C'est le théorème de comparaison logarithmique avec $\sum_{n\geqslant 0}u_n$ et $\sum_{n\geqslant 0}k^n$.
- 2. Son corollaire avec $\sum_{n\geqslant 0} k^n$ et $\sum_{n\geqslant 0} u_n$.

Théorème (règle de d'Alembert) :

Soit $\sum_{n\geqslant 0}u_n$ à termes réels strictement positifs, supposons que $\frac{u_{n+1}}{u_n}\to l$ où $l\in [0,+\infty].$

- 1. Si $l \in [0,1[$, alors $\sum_{n \ge 0} u_n$ converge.
- 2. Si $l \in]1, +\infty]$, alors $\sum_{n \ge 0} u_n$ diverge.
- 3. Si l=1, le théorème ne permet pas de conclure.

Démonstration:

1. Si l < 1, soit alors $k \in]l, 1[$.

Il existe alors $n_0 \in \mathbb{N}$ tel que $\forall n \geq n_0, \frac{u_{n+1}}{u_n} \leq k$, donc $\sum_{n\geq 0} u_n$ converge d'après le théorème précédent.

- 2. Si l>1, il existe $n_0\in\mathbb{N}$ tel que $\forall n\geqslant n_0, \frac{u_{n+1}}{u_n}\geqslant 1,$ donc $\sum_{n\geqslant 0}u_n$ diverge.
- $3. \ \,$ Exemple des séries de Riemann :

Si $u_n = \frac{1}{n^{\alpha}}$ pour $n \ge 1$ et $\alpha \in \mathbb{R}$, on a toujours $\frac{u_{n+1}}{u_n} = \left(\frac{n}{n+1}\right)^{\alpha} \to 1$, mais suivant le choix de α , $\sum_{n \ge 1} u_n$ converge ou diverge.

Exemple:

La série $\sum_{n\geqslant 0} \frac{z^n}{n!}$ pour $z\in\mathbb{C}$ est absolument convergente.

- Si z = 0 ok...
- Si $z \neq 0$, alors soit $u_n = \left| \frac{z^n}{n!} \right| > 0$

Pour $n \in \mathbb{N}$, $\frac{u_{n+1}}{u_n} = \left| \frac{z^{n+1}}{(n+1)!} \times \frac{n!}{z^n} \right| = \frac{|z|}{n+1} \xrightarrow[n \to +\infty]{} 0$. Donc la série converge bien absolument.

Pour $z \in \mathbb{C}$, on note alors $\exp z = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$.

D) Séries de Riemann

Soit $\alpha \in \mathbb{R}$; on étudie la série $\sum_{n \geqslant 1} \frac{1}{n^{\alpha}}$

- Si $\alpha \leq 0$, alors $\forall n \in \mathbb{N}, \frac{1}{n^{\alpha}} \geq 1$, donc la série diverge grossièrement.
- Si $\alpha > 0$:

On va utiliser la décroissance de $f: t \mapsto \frac{1}{t^{\alpha}}$.

Pour $n \in \mathbb{N}$, et $t \in [n, n+1]$, on a $f(n+1) \leq \frac{1}{t^{\alpha}} \leq f(n)$.

Donc $\int_n^{n+1} f(n+1) dt \leqslant \int_n^{n+1} \frac{1}{t^{\alpha}} dt \leqslant \int_n^{n+1} f(n) dt$.

C'est-à-dire $\frac{1}{(n+1)^{\alpha}} \leqslant \int_{n}^{n+1} \frac{1}{t^{\alpha}} dt \leqslant \frac{1}{n^{\alpha}}$.

D'où $\sum_{k=1}^n \frac{1}{(k+1)^{\alpha}} \leqslant \int_1^{n+1} \frac{1}{t^{\alpha}} \,\mathrm{d}t \leqslant \sum_{k=1}^n \frac{1}{k^{\alpha}} \leqslant \int_1^n \frac{1}{t^{\alpha}} \,\mathrm{d}t + \frac{1}{1^{\alpha}}$

On est ainsi ramené à l'étude de $I_n = \int_1^n \frac{1}{t^\alpha} \, \mathrm{d}t$

Si $\alpha = 1$, pour $n \in \mathbb{N}$, $I_n = \ln n$ donc $I_n \to +\infty$, soit $\sum_{k=1}^n \frac{1}{k^{\alpha}} \to +\infty$

Si $\alpha < 1$, $\forall n \in \mathbb{N}$, $\sum_{k=1}^{n} \frac{1}{k^{\alpha}} \geqslant \sum_{k=1}^{n} \frac{1}{k} \to +\infty$

Si $\alpha > 1$, $I_n = \int_1^n \frac{1}{t^{\alpha}} dt = \left[\frac{1}{1-\alpha} \frac{1}{t^{\alpha-1}}\right]_1^n = \frac{1}{1-\alpha} \left(\frac{1}{n^{\alpha-1}} - 1\right) \leqslant \frac{1}{1-\alpha}$.

Donc $\forall n \in \mathbb{N}, \sum_{k=1}^{n} \frac{1}{k^{\alpha}} \leq 1 + \frac{1}{1-\alpha}$, et $\sum_{n \geq 1} \frac{1}{n^{\alpha}}$ converge.

Ainsi:

La série de Riemann $\sum_{n\geqslant 1} \frac{1}{n^{\alpha}}$ est :

Convergente si $\alpha > 1$, divergente si $0 < \alpha \le 1$, grossièrement divergente si $\alpha \le 0$.

Théorème:

Soit $\sum_{n\geq 0} u_n$ une série à termes réels positifs.

- 1. S'il existe $\alpha > 1$ tel que $u_n = O\left(\frac{1}{n^{\alpha}}\right)$, alors $\sum_{n \geqslant 0} u_n$ converge.
- 2. S'il existe $\alpha \leq 1$ tel que $\frac{1}{n^{\alpha}} = O(u_n)$, alors $\sum_{n \geq 0} u_n$ diverge.

Théorème (règle de Riemann ou « $n^{\alpha}u_n$ »)) :

Soit $\sum_{n\geqslant 0} u_n$ une suite à termes réels positifs.

- 1. S'il existe $\alpha > 1$ et $l \in [0, +\infty[$ tels que $n^{\alpha}u_n \to l$, alors $\sum_{n \ge 0} u_n$ converge.
- 2. S'il existe $\alpha \leq 1$ et $l \in]0, +\infty[$ tels que $n^{\alpha}u_n \to l$, alors $\sum_{n\geq 0} u_n$ diverge.

Démonstration:

Si $n^{\alpha}u_n \to l$ pour $\alpha > 1$ et $l \in [0, +\infty[$, alors $u_n = O\left(\frac{1}{n^{\alpha}}\right)$ (car $n^{\alpha}u_n$ est bornée et $(u_n)_{n \in \mathbb{N}}$ est positive) Même chose si $\alpha \leq 1$, on a $\frac{1}{n^{\alpha}} = O(u_n)$ (même raison)

Exemple (Séries de Bertrand) :

Soient $\alpha, \beta \in \mathbb{R}$ et $\sum_{n \geq 2} u_n$ la série de terme général $u_n = \frac{1}{n^{\alpha} \ln^{\beta} n}$.

• Cas $1: \alpha < 1$

Soit
$$\alpha' \in]\alpha, 1[$$
.

Alors $n^{\alpha'}u_n = \frac{n^{\alpha'-\alpha}}{\ln^{\beta}n} \xrightarrow[n \to +\infty]{} +\infty$, donc $\sum_{n \geqslant 2} u_n$ diverge.

• Cas $2 : \alpha > 1$.

Soit
$$\alpha' \in]1, \alpha[$$
.

Alors $n^{\alpha'}u_n = \frac{1}{n^{\alpha-\alpha'}\ln^{\beta}n} \xrightarrow[n \to +\infty]{} 0$, donc $\sum_{n \geqslant 2} u_n$ converge.

• Cas $3: \alpha = 1$.

$$\diamond \text{ Si } \beta \leqslant 0, \text{ alors } nu_n = \ln^{-\beta} n \xrightarrow[n \to +\infty]{} \begin{cases} +\infty & \text{ si } \beta < 0 \\ 1 & \text{ si } \beta = 0 \end{cases}, \text{ et } \sum_{n \geqslant 2} u_n \text{ diverge.}$$

$$\diamond$$
 Si $\beta > 0$:

On étudie
$$\sum_{n\geqslant 2} \frac{1}{n \ln^{\beta} n}$$

Soit
$$f \colon [2, +\infty[\longrightarrow \mathbb{R}]$$
. Alors f est de classe \mathcal{C}^{∞} .

Pour
$$t \in [2, +\infty[, f'(t) = \frac{-\ln \beta - \beta \ln^{\beta-1} t}{t^2 \ln^{2\beta} t} \le 0$$
. Donc f est décroissante sur $[2, +\infty[$.

Pour
$$n \ge 2$$
 et $t \in [n, n+1]$, on a : $f(n+1) \le f(t) \le f(n)$,

Donc
$$f(n+1) \leqslant \int_n^{n+1} f(t) dt \leqslant f(n)$$
.

Or,
$$\frac{f(n+1)}{f(n)} = \frac{n \ln^{\beta} n}{(n+1) \ln^{\beta} (n+1)} \xrightarrow[n \to +\infty]{} 1.$$

Donc
$$\frac{1}{f(n)} \int_n^{n+1} f(t) dt \xrightarrow[n \to +\infty]{} 1$$
, soit $\int_n^{n+1} f(t) dt \underset{n \to +\infty}{\sim} f(n)$.

Donc les séries
$$\sum_{n\geqslant 2} \frac{1}{n\ln^{\beta}n}$$
 et $\sum_{n\geqslant 2} \int_{n}^{n+1} \frac{1}{t\ln^{\beta}t} dt$ ont la même nature.

On étudie alors
$$S_n = \int_2^{n+1} \frac{1}{t \ln^{\beta} t} dt$$
.

On a :
$$S_n = \int_2^{n+1} \frac{1}{t \ln^\beta t} \, \mathrm{d}t = \int_{\ln 2}^{\ln(n+1)} \frac{1}{u^\beta} \, \mathrm{d}u$$

Ainsi, si $\beta \leq 1$, $S_n \to +\infty$, et si $\beta > 1$, S_n est bornée.

$$\begin{array}{ll} \textbf{Conclusion:} \\ \text{La série } \sum_{n \geqslant 2} \frac{1}{n^{\alpha} \ln^{\beta} n} \text{ converge si } \left\{ \begin{array}{ll} \alpha > 1 \\ \text{ou } \alpha = 1 \text{ et } \beta > 1 \end{array} \right. & \text{et diverge si } \left\{ \begin{array}{ll} \alpha < 1 \\ \text{ou } \alpha = 1 \text{ et } \beta \leq 1 \end{array} \right. \\ \end{array}$$

III Sommation des relations de comparaison

A) Domination, prépondérance

Théorème:

Soit $\sum_{n\geqslant 0} \alpha_n$ une série à termes réels positifs, et $\sum_{n\geqslant 0} u_n$ une série de \mathbb{K} . On suppose que $u_n = \sum_{n\to +\infty} u_n$ $O(\alpha_n)$.

- 1. Si la série $\sum_{n\geqslant 0} \alpha_n$ converge, alors $\sum_{n\geqslant 0} u_n$ converge, et $\sum_{k=n+1}^{+\infty} u_k = O\left(\sum_{k=n+1}^{+\infty} \alpha_k\right)$, c'està-dire $R_n(u) = O(R_n(\alpha))$
- 2. Si la série $\sum_{n\geqslant 0} \alpha_n$ diverge, alors $\sum_{k=0}^n u_k = O(\sum_{k=0}^n \alpha_k)$, ou $S_n(u) = O(S_n(\alpha))$.

Démonstration:

1. On sait déjà qu'alors $\sum_{n\geq 0} u_n$ converge absolument.

Par ailleurs, il existe A > 0 et $n_0 \in \mathbb{N}$ tels que $\forall n \ge n_0, |u_n| \le A\alpha_n$.

Donc, pour
$$n \ge n_0$$
, $\left|\sum_{k=n+1}^{+\infty} u_k\right| \le \sum_{k=n+1}^{+\infty} |u_k| \le \sum_{k=n+1}^{+\infty} A\alpha_k$, c'est-à-dire $\forall n \ge n_0, |R_n(u)| \le AR_n(\alpha)$, donc $R_n(u) = O(R_n(\alpha))$.

2. Il existe toujours A > 0 et $n_0 \in \mathbb{N}$ tels que $\forall n \ge n_0, |u_n| \le A\alpha_n$.

Donc, pour $n > n_0$:

$$\left| \sum_{k=0}^{n} u_k \right| \leqslant \sum_{k=0}^{n_0} |u_k| + \sum_{k=n_0+1}^{n} |u_k| \leqslant \sum_{k=0}^{n_0} |u_k| + A \sum_{k=n_0+1}^{n} \alpha_k$$
 (2.10)

Comme $\sum_{n \geq n_0+1} \alpha_n$ diverge, il existe $n_1 > n_0$ tel que $\sum_{k=0}^{n_0} |u_k| \leq A \sum_{k=n_0+1}^{n_1} \alpha_k$

Ainsi, pour $n \ge n_1$, $|S_n(u)| \le 2AS_n(\alpha)$.

Donc $S_n(u) = O(S_n(\alpha))$

Théorème :

Soit $\sum_{n\geqslant 0} \alpha_n$ une série à termes réels positifs, $\sum_{n\geqslant 0} u_n$ une série de \mathbb{K} telle que $u_n = o(\alpha_n)$.

- 1. Si $\sum_{n\geqslant 0} \alpha_n$ converge, alors $\sum_{n\geqslant 0} u_n$ converge absolument, et $R_n(u) \underset{n\to +\infty}{=} o(R_n(\alpha))$
- 2. Si $\sum_{n\geq 0} \alpha_n$ diverge, alors $S_n(u) = o(S_n(\alpha))$

Démonstration:

Même que précédemment en remplaçant « $\exists A>0$ » par « $\forall \varepsilon>0$ ».

B) Équivalence

Théorème:

Soient $\sum_{n\geqslant 0}u_n$ et $\sum_{n\geqslant 0}v_n$ deux séries de $\mathbb K$ dont l'une au moins est à termes réels positifs et telles que $u_n \underset{n\to +\infty}{\sim} v_n$.

Alors ces séries sont de même nature, et :

- 1. Si elles convergent, $R_n(u) \underset{n \to +\infty}{\sim} R_n(v)$
- 2. Si elles divergent, $S_n(u) \underset{n \to +\infty}{\sim} S_n(v)$.

Démonstration:

Supposons que $\sum_{n\geqslant 0} u_n$ est à termes positifs. Alors $v_n - u_n = 0$ (u_n) .

Donc

1. Si $\sum_{n\geqslant 0} u_n$ converge, alors $\sum_{n\geqslant 0} u_n - v_n$ converge, donc $\sum_{n\geqslant 0} v_n$ aussi.

De plus,
$$\underbrace{R_n(v-u)}_{R_n(v)-R_n(u)} = o(R_n(u))$$

Donc $R_n(v) \sim R_n(u)$

2. Si $\sum_{n\geqslant 0} u_n$ diverge, alors $S_n(v-u) \underset{n\to +\infty}{=} o(S_n(u))$.

Donc $S_n(v) \underset{n \to +\infty}{\sim} S_n(u)$, et $\sum_{n \geqslant 0} v_n$ diverge.

Application : lemme de Césaro :

Théorème:

Si $(u_n)_{n\in\mathbb{N}}$ est une suite de \mathbb{K} qui converge vers l, alors la suite $v_n=\frac{1}{n+1}\sum_{k=0}^n u_k$ converge vers l.

Démonstration:

On compare $\sum_{n\geqslant 0} u_n - l$ et $\sum_{n\geqslant 0} 1$:

$$\begin{cases} \forall n \in \mathbb{N}, 1 \ge 0 \\ u_n - l = o(1) \\ \sum_{n \ge 0} 1 \text{ diverge} \end{cases}$$
 (2.11)

Ainsi,
$$\sum_{k=0}^{n} (u_k - l) \underset{n \to +\infty}{=} o(\sum_{k=0}^{n} 1)$$

Soit $\left(\frac{1}{n+1} \sum_{k=0}^{n} u_k\right) - l \underset{n \to +\infty}{=} o(1)$.

Théorème:

Si $(u_n)_{n\in\mathbb{N}}$ est une suite réelle tendant vers $+\infty$, alors $v_n = \frac{1}{n+1}\sum_{k=0}^n u_k$ tend vers $+\infty$.

Démonstration:

Il existe $n_0 \in \mathbb{N}$ tel que $\forall n \ge n_0, u_n \ge 0$. Alors :

$$\begin{cases} \forall n \geqslant n_0, u_n \geqslant 0 \\ 1 = o(u_n) \\ \sum_{n \geqslant 0} u_n \text{ diverge} \end{cases}$$
 (2.12)

Ainsi, on a:

$$\sum_{k=n_0}^{n} 1 \underset{n \to +\infty}{=} o\left(\sum_{k=n_0}^{n} u_k\right)$$
(2.13)

Donc
$$\sum_{k=0}^{n} 1 \underset{n \to +\infty}{=} o(\sum_{k=0}^{n} u_k)$$
, d'où $1 \underset{n \to +\infty}{=} o(v_n)$

C) Comportement asymptotique des séries de Riemann

Soit $\alpha>0.$ Alors $f\colon [1,+\infty[$ \longrightarrow \mathbb{R} est décroissante. $t \longmapsto \frac{1}{t^\alpha}$

Donc $\forall n \geqslant 2, \frac{1}{n^{\alpha}} \leqslant \int_{n-1}^{n} \frac{1}{t^{\alpha}} dt \leqslant \frac{1}{(n-1)^{\alpha}}$. Comme $\frac{1}{n^{\alpha}} \sim \frac{1}{(n-1)^{\alpha}}$, on a, d'après le théorème des gendarmes, $\frac{1}{n^{\alpha}} \sim \int_{n-1}^{n} \frac{1}{t^{\alpha}} dt$

Ces deux suites $u_n = \frac{1}{n^{\alpha}}$ et $v_n = \int_{n-1}^n \frac{1}{t^{\alpha}} dt$ sont à termes réels positifs. D'où :

• Si $\alpha < 1$, on a : $\sum_{k=1}^{n} \frac{1}{k^{\alpha}} \sum_{n \to +\infty} \int_{1}^{n} \frac{1}{t^{\alpha}} dt$ et $\int_{1}^{n} \frac{1}{t^{\alpha}} dt = \left[\frac{1}{1-\alpha} t^{1-\alpha}\right]_{1}^{n} \sum_{n \to +\infty} \frac{n^{1-\alpha}}{1-\alpha}$.

Donc $\sum_{k=1}^{n} \frac{1}{k^{\alpha}} \sim \frac{n^{1-\alpha}}{1-\alpha}$

- Si $\alpha = 1$, on a : $\sum_{k=1}^{n} \frac{1}{k} \sim \lim_{n \to +\infty} \ln n$
- Si $\alpha > 1$, les séries convergent, et $\sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}} \sum_{n \to +\infty}^{+\infty} \int_{n+1}^{+\infty} \frac{1}{t^{\alpha}} dt$ Donc $\sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}} \sum_{n \to +\infty}^{\infty} \frac{1}{(\alpha - 1)n^{\alpha - 1}}$.

IV Comparaison d'une série et d'une intégrale

A) Cas d'une fonction positive décroissante

Soit $f \colon [0, +\infty[\to \mathbb{R}$ une fonction continue par morceaux, positive et décroissante.

On veut comparer la nature de la série $\sum_{n\geqslant 1} f(n)$ et de l'intégrale $\int_0^{+\infty} f(t) dt$.

On pose, pour tout $n \in \mathbb{N}^*$, $w_n = \int_{n-1}^n f(t) dt - f(n)$.

Pour $n \in \mathbb{N}^*$, on a $f(n) \leq \int_{n-1}^n f(t) dt \leq f(n-1)$

Donc $0 \le w_n \le f(n-1) - f(n)$.

La série $\sum_{n\geqslant 1}w_n$ est donc à termes positifs, et $S_n(w)=\sum_{k=1}^nw_k\leqslant \sum_{k=1}^n\left(f(k-1)-f(k)\right)$

Soit $S_n(w) \leqslant f(0) - f(n) \leqslant f(0)$

Donc $\sum_{n\geqslant 1} w_n$ converge, et de plus $\sum_{k=1}^n w_k = \int_0^n f(t) dt - \sum_{k=1}^n f(n)$.

D'où le théorème :

Théorème :

Soit $f: [0, +\infty[\to \mathbb{R}$ une fonction continue par morceaux, positive et décroissante.

Alors:

- 1. La série de terme général $w_n = \int_{n-1}^n f(t) \, \mathrm{d}t f(n)$ (définie pour $n \geqslant 1$) converge.
- 2. La série $\sum_{n\geq 0} f(n)$ converge si et seulement si f est intégrable sur $[0, +\infty[$ (c'est-à-dire que la suite $(\int_0^n |f(t)| dt)_{n\in\mathbb{N}}$ converge), et dans ce cas :

$$\sum_{n=1}^{+\infty} w_n = \int_0^{+\infty} f(t) \, \mathrm{d}t - \sum_{n=1}^{+\infty} f(n)$$
 (2.14)

B) Cas d'une fonction de classe C^1

Soit $f: [0, +\infty[\to \mathbb{R} \text{ une fonction de classe } \mathcal{C}^1 \text{ telle que } f' \text{ soit intégrable sur } [0, +\infty[$.

Posons, pour $n \in \mathbb{N}^*$, $w_n = \int_{n-1}^n f(t) dt - f(n)$.

On a alors:

$$w_n = \left[(t - n + 1)f(t) \right]_{n-1}^n - \int_{n-1}^n (t - n + 1)f'(t) dt - f(n) = -\int_{n-1}^n (t - n + 1)f'(t) dt$$
 (2.15)

Donc $|w_n| \leq \int_{n-1}^n |f'(t)| dt$

Et
$$\sum_{k=1}^{n} |w_k| \le \int_0^n |f'(t)| dt \le \int_0^{+\infty} |f'(t)| dt$$
.

Donc la série $\sum_{n\geqslant 1} w_n$ est absolument convergente.

D'où le théorème :

Théorème:

Soit $f: [0, +\infty[\to \mathbb{R}$ une fonction de classe \mathcal{C}^1 telle que f' soit intégrable sur $[0, +\infty[$. Alors :

- 1. La série de terme général $w_n = \int_{n-1}^n f(t) dt f(n)$ (définie pour $n \in \mathbb{N}^*$) converge absolument.
- 2. Si de plus f est intégrable sur $[0, +\infty[$, alors la série $\sum_{n\geqslant 0} f(n)$ converge, et dans ce cas $\sum_{n=1}^{+\infty} w_n = \int_0^{+\infty} f(t) dt \sum_{n=1}^{+\infty} f(n)$

C) Exemple: la constante d'Euler

Soit $f\colon [0,+\infty[$ \longrightarrow \mathbb{R} , positive, continue et décroissante. $t \ \longmapsto \ \frac{1}{1+t}$

Alors la série de terme général $w_n = \int_{n-1}^n \frac{1}{1+t} dt - \frac{1}{1+n}$ converge.

Et
$$\sum_{k=1}^{n} w_k = \int_0^n \frac{1}{1+t} dt - \sum_{k=1}^n \frac{1}{1+k} = \ln(n+1) - \sum_{k=1}^{n+1} \frac{1}{k} + 1$$
.

On pose alors $\gamma = 1 - \sum_{k=1}^{+\infty} w_k$

On a
$$0 \le \sum_{k=1}^{+\infty} w_k \le f(0) = 1$$

Donc $\gamma \in [0; 1]$, et:

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + o(1) \tag{2.16}$$

Valeur approchée : $\gamma = 0,577$.

V Exemples de séries semi-convergentes

A) Cas des séries alternées – critère de Leibniz

Définition:

On appelle série alternée toute série $\sum_{n\geqslant 0}u_n$ à termes dans \mathbb{K} telle que $(-1)^nu_n$ soit de signe constant. Si ce signe est positif, on a $\forall n\in\mathbb{N}, u_n=(-1)^n|u_n|$, et si ce signe est négatif, on a $\forall n\in\mathbb{N}, u_n=(-1)^{n+1}|u_n|$.

Théorème (critère spécial des séries alternées):

Soit $\sum_{n\geq 0} u_n$ une série alternée.

Si la suite $(|u_n|)_{n\in\mathbb{N}}$ est décroissante de limite nulle, alors la série converge.

Démonstration:

On suppose par exemple que $\forall n \in \mathbb{N}, (-1)^n u_n \geq 0.$

On étudie la suite $S_n = \sum_{k=0}^n u_k$, ou plutôt $(S_{2n})_{n \in \mathbb{N}}$ et $(S_{2n+1})_{n \in \mathbb{N}}$:

• $S_{2n} - S_{2n+2} = -u_{2n+1} - u_{2n+2} = |u_{2n+1}| - |u_{2n+2}| \ge 0.$

Donc $(S_{2n})_{n\in\mathbb{N}}$ est décroissante.

• $S_{2n+1} - S_{2n+3} = -u_{2n+2} - u_{2n+3} = |u_{2n+3}| - |u_{2n+2}| \le 0.$

Donc $(S_{2n+1})_{n\in\mathbb{N}}$ est croissante.

• $S_{2n} - S_{2n+1} = -u_{2n+1} = |u_{2n+1}|$

Donc $\forall n \in \mathbb{N}, S_{2n} \geqslant S_{2n+1}$, et $S_{2n} - S_{2n+1} \xrightarrow[n \to +\infty]{} 0$.

Les deux suites sont donc adjacentes, et convergent vers une même limite S.

Donc $(S_n)_{n\in\mathbb{N}}$ converge vers S.

Exemple:

La série $\sum_{n\geqslant 1} \frac{(-1)^{n-1}}{n}$ converge.

Information sur la convergence de $\sum_{n\geq 0} u_n$ (toujours avec $(-1)^n u_n \geq 0$):

• $\forall n \in \mathbb{N}, S_{2n+1} \leq S \leq S_{2n}, \text{ donc } \forall n \in \mathbb{N}, S \in [(S_n, S_{n+1})]$

 $([(x,y)] \text{ signifie } [\min(x,y),\max(x,y)])$

- $\forall n \in \mathbb{N}, |R_n| = |S S_n| \le |S_n S_{n+1}| \le |u_{n+1}|$
- $S \geqslant S_1 = |u_0| |u_1| \geqslant 0$. Donc S est du signe de u_0 .

(Dans le cas d'une série tronquée, S est du signe du premier terme)

Remarque:

La réciproque du théorème est fausse :

$$u_n = \begin{cases} \frac{1}{n^2} & \text{si } n \equiv 0 \mod 2\\ -\frac{1}{n^3} & \text{si } n \equiv 1 \mod 2 \end{cases}$$
 (2.17)

 $\sum_{n\geqslant 1}u_n$ est absolument convergente, mais ne vérifie pas le critère de Leibniz.

B) Exemples d'utilisation de groupements de termes

Exemple 1 Soit $\sum_{n\geq 0} u_n$ avec $u_n = \frac{(-1)^n}{n+z}$ où $z \in \mathbb{C} \setminus \mathbb{Z}_-$.

Méthode 1 On note $U_n = \sum_{k=0}^n u_k$. Pour $n \in \mathbb{N}$, on pose $v_n = u_{2n} + u_{2n+1}$.

Alors
$$v_n = \frac{1}{2n+z} - \frac{1}{2n+1+z} = \frac{1}{(2n+z)(2n+1+z)}$$

Alors $v_n = \frac{1}{2n+z} - \frac{1}{2n+1+z} = \frac{1}{(2n+z)(2n+1+z)}$ Ainsi, $|v_n| \underset{n \to +\infty}{\sim} \frac{1}{4n^2}$, donc $\sum_{n \geqslant 0} v_n$ est absolument convergente.

Soit
$$V_n = \sum_{k=0}^n v_k$$
 et $V = \sum_{n=0}^{+\infty} v_n$

Alors
$$V_n = U_{2n+1}$$
, donc $U_{2n+1} \xrightarrow[n \to +\infty]{} V$

De plus,
$$U_{2n} = U_{2n+1} - u_{2n+1} \xrightarrow[n \to +\infty]{} V$$
.

Donc $(U_n)_{n\in\mathbb{N}}$ converge.

Méthode 2 On note pour $n \in \mathbb{N}$, $w_n = u_n + u_{n+1}$.

Alors
$$|w_n| = \left| \frac{1}{(n+z)(n+1+z)} \right| \underset{n \to +\infty}{\sim} \frac{1}{n^2}$$
.

Donc $\sum_{n\geq 0} w_n$ converge, disons vers W.

Pour $n \in \mathbb{N}$, on a $w_n = \sum_{k=0}^n (u_k + u_{k+1}) = 2 \sum_{k=0}^n u_k - u_0 + u_{n+1}$

Donc $U_n = \frac{1}{2}(w_n + u_0 - u_{n+1})$, et $U_n \xrightarrow[n \to +\infty]{} \frac{1}{2}(W + u_0)$.

Exemple 2 Soit $\sum_{n\geqslant 1} u_n$ où $u_n = \cos\left(\frac{2\pi}{3}n\right) \times \frac{1}{n}$.

On a :
$$\cos\left(\frac{2\pi}{3}n\right) = \begin{cases} 1 & \text{si } n \equiv 0 \mod 3\\ \frac{-1}{2} & \text{sinon} \end{cases}$$

On pose alors $v_n = u_{3n} + u_{3n+1} + u_{3n+2}$ pour $n \ge 1$

Ainsi,

$$v_n = \frac{1}{3n} - \frac{1/2}{3n+1} - \frac{1/2}{3n+2} = \frac{1}{3n} \left(1 - \frac{1/2}{1 + \frac{1}{3n}} - \frac{1/2}{1 + \frac{2}{3n}} \right)$$

$$= \frac{1}{3n} \left(1 - \frac{1}{2} \left(1 + O\left(\frac{1}{n}\right) \right) - \frac{1}{2} \left(1 + O\left(\frac{1}{n}\right) \right) \right) = O\left(\frac{1}{n^2}\right)$$
(2.18)

Donc $\sum_{n\geqslant 0} v_n$ converge, et on vérifie qu'alors $\sum_{n\geqslant 0} u_n$ converge...

C) Exploitation de développements limités

Exemple 1 $\sum_{n\geq 0} u_n$ où $u_n = \frac{(-1)^n}{n+z}, z \in \mathbb{C} \setminus \mathbb{Z}_-$.

Rappel:

Pour une variable complexe u,

$$\frac{1}{1+u} = 1 - u + \underset{u \to 0}{o}(|u|) \text{ (en effet, } \frac{1}{1+u} = 1 - u + \frac{u^2}{1+u})$$

$$\text{Donc } u_n = \frac{(-1)^n}{n} \left(\frac{1}{1+\frac{z}{n}}\right) = \frac{(-1)^n}{n} \left(1 + \underset{n \to +\infty}{O}(\frac{z}{n})\right) = \frac{(-1)^n}{n} + \underset{n \to +\infty}{O}(\frac{1}{n^2}).$$

Or, la série $\sum_{n\geqslant 0} \frac{(-1)^n}{n}$ converge (critère de Leibniz), ainsi que la série $\sum_{n\geqslant 0} u_n - \frac{(-1)^n}{n}$ (Domination)

Donc $\sum_{n\geq 0} u_n$ converge.

Exemple 2 $\sum_{n \ge 1} \frac{(-1)^n}{\sqrt{n} + (-1)^{n-1}}$. On pose $u_n = \frac{(-1)^n}{\sqrt{n} + (-1)^{n-1}}$.

Déjà, pour $n \ge 1$, $\sqrt{n} > (-1)^n$, donc $(u_n)_{n \in \mathbb{N}}$ est bien définie.

Pour $n \ge 1$, on a:

$$u_n = \frac{(-1)^n}{\sqrt{n}} \left(\frac{1}{1 + \frac{(-1)^{n+1}}{\sqrt{n}}} \right) = \frac{(-1)^n}{\sqrt{n}} \left(1 + \frac{(-1)^n}{\sqrt{n}} + O\left(\frac{1}{n}\right) \right)$$

$$= \frac{(-1)^n}{\sqrt{n}} + \frac{1}{n} + O\left(\frac{1}{n^{3/2}}\right)$$
(2.19)

Donc $\sum_{n\geqslant 1} u_n$ diverge (car sinon $\sum_{n\geqslant 1} \frac{1}{n}$ convergerait aussi)

Attention : On a pour tant $u_n \underset{n \to +\infty}{\sim} \frac{(-1)^n}{\sqrt{n}}$, terme général d'une série convergente.

En général, si on a deux suites u et v telles que $|u_n| \sim |v_n|$ et $|v_n|$ est décroissante, on n'a pas pour autant $|u_n|$ décroissante, même à partir d'un certain rang.

D) Transformation d'Abel (hors-programme)

Idée : Intégration par parties discrète On cherche à calculer $\sum a_k b_k$

On pose $B_n = \sum_{k=0}^n b_k$.

Pour $n \in \mathbb{N}$ et $p \ge n+1$, on a :

$$\sum_{k=n+1}^{p} a_k b_k = \sum_{k=n+1}^{p} a_k B_k - \sum_{k=n+1}^{p} a_k B_{k-1} = \sum_{k=n+1}^{p} a_k B_k - \sum_{k=n}^{p-1} a_{k+1} B_k$$

$$= \sum_{k=n+1}^{p} (a_k - a_{k+1}) B_k - a_{n+1} B_n + a_{p+1} B_p$$

$$= [a_{p+1} B_p - a_{n+1} B_n] - \sum_{k=n+1}^{p} (a_{k+1} - a_k) B_k$$

$$(2.20)$$

Application (Théorème d'Abel) :

Soit $(a_k)_{k\geqslant 0}$ une suite réelle décroissante de limite nulle, et $(b_k)_{k\geqslant 0}$ une suite de \mathbb{K} telle que $(\sum_{k=0}^n b_k)_{n\geqslant 0}$ soit bornée. Alors la série $\sum_{k\geqslant 0} a_k b_k$ converge.

Démonstration:

On va vérifier le critère de Cauchy.

Posons $B_n = \sum_{k=0}^n b_k$, et $M \ge 0$ tel que $\forall n \in \mathbb{N}, |B_n| \le M$.

Alors, pour $n \in \mathbb{N}$ et $p \in \mathbb{N}$:

$$\left| \sum_{k=n}^{n+p} a_k b_k \right| \le |a_{n+p+1} B_{n+p}| + |a_{n+1} B_n| + \sum_{k=n+1}^{n+p} |a_{k+1} - a_k| |B_k|$$

$$(a_{n+p+1} + a_{n+1}) M + M \underbrace{\sum_{k=n+1}^{n+p} a_k - a_{k+1}}_{=a_{n+1} - a_{n+p+1}}$$

$$(2.21)$$

C'est-à-dire $|R_{n,p}| \leq 2Ma_{n+1}$

Or, $\lim_{n\to+\infty}a_n=0$, donc pour tout $\varepsilon>0$, il existe $n_0\in\mathbb{N}$ tel que $\forall n\geqslant n_0, 2Ma_{n+1}\leqslant \varepsilon$.

Donc, si $n \ge n_0$ et pour $p \in \mathbb{N}$, $|R_{n,p}| \le \varepsilon$.

Donc $\sum_{k\geqslant 0} a_k b_k$ converge.

On pouvait aussi simplement remarquer que, pour tout $p \in \mathbb{N}$:

$$\sum_{k=1}^{p} a_k b_k = a_{p+1} B_p - a_1 B_0 + \sum_{k=1}^{p} (a_k - a_{k+1}) B_k$$

$$= O(a_k - a_{k+1}) \text{ terme général d'une série convergente}$$
(2.22)

VI Application

A) Développement décimal d'un réel

Définition:

Soit $x \in \mathbb{R}_+$.

On appelle développement décimal de x toute suite $(d_n)_{n\in\mathbb{N}}$ telle que :

- (1) $d_0 \in \mathbb{N} \text{ et } \forall n \ge 1, d_n \in [0, 9]$
- (2) $\sum_{k=0}^{+\infty} \frac{d_n}{10^n} = x$

Remarque:

Si $(d_n)_{n\in\mathbb{N}}$ vérifie (1), alors $\forall n \geq 1, \frac{d_n}{10^n} \leq \frac{9}{10^n}$, donc la série converge bien.

Existence On pose, pour
$$n \in \mathbb{N}$$
, $u_n = E(10^n x)$, et
$$\begin{cases} d_0 = u_0 \\ \forall n \in \mathbb{N}^*, d_n = u_n - 10u_{n-1} \end{cases}$$

Alors:

1. $\forall n \in \mathbb{N}, d_n \in \mathbb{N}...$

Pour $n \in \mathbb{N}^*$, $u_n \leq 10^n x < u_n + 1$,

Soit $10u_n \le 10^{n+1}x < 10u_n + 10$

Donc $10u_n \le u_{n+1} \le 10u_n + 9$.

D'où $0 \le d_{n+1} \le 9$.

- 2. Montrons par récurrence que $u_n = \sum_{k=0}^n d_k 10^{n-k}$.
 - $u_0 = d_0$.
 - Si $u_n = \sum_{k=0}^n d_k 10^{n-k}$ pour $n \in \mathbb{N}$, alors :

$$u_{n+1} = d_{n+1} + 10 \sum_{k=0}^{n} d_k 10^{n-k} = d_{n+1} + \sum_{k=0}^{n} d_k 10^{n+1-k} = \sum_{k=0}^{n+1} d_k 10^{n+1-k}$$
 (2.23)

Ce qui achève la récurrence.

Or, on a $u_n \le 10^n x < u_n + 1$, donc $\frac{u_n}{10^n} \le x < \frac{u_n}{10^n} + \frac{1}{10^n}$, soit $x - \frac{1}{10^n} < \sum_{k=0}^n \frac{d_k}{10^k} \le x$.

D'où $x = \sum_{k=0}^{+\infty} \frac{d_k}{10^k}$ d'après le théorème des gendarmes.

Définition:

On dit que $x \in \mathbb{R}$ est décimal s'il existe $(a, n) \in \mathbb{Z} \times \mathbb{N}$ tel que $x = \frac{a}{10^n}$.

Étude de l'unicité Soit $x \in \mathbb{R}_+$ admettant deux développements décimaux $(d_n)_{n \in \mathbb{N}}$ et $(e_n)_{n \in \mathbb{N}}$.

Soit $p = \min\{n \in \mathbb{N}, d_n \neq e_n\}$. On va supposer par exemple que $d_p < e_p$.

On a
$$x = \sum_{n=0}^{+\infty} \frac{d_n}{10^n} = \sum_{n=0}^{+\infty} \frac{e_n}{10^n}$$

Donc
$$\sum_{n=p}^{+\infty} \frac{d_n}{10^n} = \sum_{n=p}^{+\infty} \frac{e_n}{10^n}$$
, soit $\sum_{n=p}^{+\infty} \frac{d_n}{10^{n-p}} = \sum_{n=p}^{+\infty} \frac{e_n}{10^{n-p}}$

Donc

$$d_p + \sum_{n=p+1}^{+\infty} \frac{d_n}{10^{n-p}} = e_p + \sum_{n=p+1}^{+\infty} \frac{e_n}{10^{n-p}}$$
 (2.24)

Or,
$$\sum_{n=p+1}^{+\infty} \frac{d_n}{10^{n-p}} \leqslant \sum_{n=p+1}^{+\infty} \frac{9}{10^{n-p}} = \frac{9/10}{1-1/10} = 1$$
, et $\sum_{n=p+1}^{+\infty} \frac{e_n}{10^{n-p}} \geqslant 0$, et $d_p \leqslant e_p - 1$.

D'après l'égalité (2.24), ces trois inégalités sont des égalités.

Donc
$$e_p = d_p + 1$$
, et $\forall n \ge p + 1$,
$$\begin{cases} d_n = 9 \\ e_n = 0 \end{cases}$$

En particulier, $x = \sum_{n=0}^{+\infty} \frac{e_n}{10^n}$ est décimal, et on écrit :

$$\begin{cases} x = d_0, d_1 \dots d_p 99 \dots \\ x = d_0, d_1 \dots e_p 00 \dots \end{cases}$$
 (2.25)

Réciproquement, tout nombre décimal admet exactement deux développements décimaux.

Définition:

On appelle développement décimal propre de $x \in \mathbb{R}_+$ son unique développement décimal qui n'est pas stationnaire à 9.

Remarque:

Si x admet un développement décimal stationnaire à 9, alors x est décimal.

Formule de Stirling On cherche un développement asymptotique de $\ln(n!) = \sum_{k=2}^{n} \ln k$.

On considère la fonction $f : [1, +\infty[\longrightarrow \mathbb{R} t \longmapsto \ln t]$

C'est une fonction de classe \mathcal{C}^1 (même \mathcal{C}^{∞}), mais f' n'est pas intégrable sur $[1, +\infty[$. On pose $w_n = \int_{n-1}^n f(t) dt - f(n)$ pour $n \ge 2$.

On a: $\sum_{k=2}^{n} w_k = \int_1^n \ln t \, dt - \sum_{k=2}^{n} \ln k = n \ln n - n + 1 - \ln n!$.

Par ailleurs, en faisant une intégration par parties :

$$w_{n} = [(t - n + 1)f(t)]_{n-1}^{n} - \int_{n-1}^{n} (n - t + 1)f'(t) dt - f(n)$$

$$= -\int_{n-1}^{n} (n - t + 1)f'(t) dt$$

$$= -\left[\frac{(t - n + 1)^{2}}{2}f'(t)\right]_{n-1}^{n} + \int_{n-1}^{n} \frac{(t - n + 1)^{2}}{2}f''(t) dt$$

$$= -\frac{1}{2n} + \frac{1}{2}\int_{n-1}^{n} \frac{-(t - n + 1)^{2}}{t^{2}} dt$$
(2.26)

On pose $x_n = \int_{n-1}^n \frac{(t-n+1)^2}{t^2} dt$.

Alors $0 \leqslant x_n \leqslant \int_{n-1}^n \frac{1}{t^2} dt \leqslant \frac{1}{(n-1)^2}$, donc $\sum_{n \geqslant 2} x_n$ converge.

Ainsi,

$$\sum_{k=2}^{n} w_k = \frac{-1}{2} \left(\sum_{k=2}^{n} \frac{1}{k} + \sum_{k=2}^{n} x_k \right) = \frac{-1}{2} \left(\sum_{k=1}^{n} \frac{1}{k} - 1 + \sum_{k=2}^{n} x_k \right)$$

$$= \frac{-1}{2} \left(\ln n + \gamma - 1 + o(1) + \sum_{k=2}^{+\infty} x_k + o(1) \right)$$
(2.27)

Donc $n \ln n - n + 1 - \ln n! = \frac{-1}{2} \left(\ln n + \gamma - 1 + \sum_{k=2}^{+\infty} x_k + o(1) \right)$

On pose $K = 1 + \frac{\gamma}{2} - \frac{1}{2} + \frac{1}{2} \sum_{k=2}^{+\infty} x_k$.

Donc $\ln n! = n \ln n - n + \frac{1}{2} \ln n + K + o(1)$

Soit : $n! \sim \frac{n^n}{e^n} \sqrt{n} e^K$.

Calcul de e^K On pose, pour $n \in \mathbb{N}$, $I_n = \int_0^{\frac{\pi}{2}} \sin^n x \, dx$

Alors, pour $n \ge 2$,

$$I_{n} = \int_{0}^{\frac{\pi}{2}} \sin^{n} x \, dx = \left[-\cos x \sin^{n-1} x \right]_{0}^{\frac{\pi}{2}} + (n-1) \int_{0}^{\frac{\pi}{2}} \cos^{2} x \sin^{n-2} x \, dx$$

$$= 0 + (n-1) \int_{0}^{\frac{\pi}{2}} \sin^{n-2} x \, dx - (n-1) \int_{0}^{\frac{\pi}{2}} \sin^{n} x \, dx = (n-1) I_{n-2} - (n-1) I_{n}$$
(2.28)

Donc $I_n = \frac{n-1}{n}I_{n-2}$.

On montre par récurrence que $\forall n \in \mathbb{N}, I_{2n} = \frac{(2n)!}{2^{2n}(n!)^2} \frac{\pi}{2}$ et $I_{2n+1} = \frac{2^{2n}(n!)^2}{(2n+1)!}$

Ainsi,

$$I_{2n} \underset{n \to +\infty}{\sim} \frac{\frac{(2n)^{2n}}{e^{2n}} \sqrt{2n} e^K}{2^{2n} \left(\frac{n^n}{e^n} \sqrt{n} e^K\right)^2} \frac{\pi}{2} \underset{n \to +\infty}{\sim} \frac{\pi}{e^K \sqrt{2n}}$$

$$(2.29)$$

 Et

$$I_{2n+1} \underset{n \to +\infty}{\sim} \frac{2^{2n} \left(\frac{n^n}{e^n} \sqrt{n} e^K\right)^2}{\frac{(2n+1)^{2n+1}}{e^{2n+1}} \sqrt{2n+1} e^K} \underset{n \to +\infty}{\sim} \frac{e^{K+1}}{\left(1 + \frac{1}{2n}\right)^{2n+1} 2\sqrt{2n}} \underset{n \to +\infty}{\sim} \frac{e^K}{2\sqrt{2n}}$$
(2.30)

Or, la suite $(I_n)_{n\in\mathbb{N}}$ est décroissante. Donc $I_{2n}\geqslant I_{2n+1}\geqslant I_{2n+2}$, donc $\frac{\pi}{e^K\sqrt{2n}} \sim \frac{e^K}{2\sqrt{2n}}$, c'est-à-dire $e^{2K}=2\pi$, ou $e^K=\sqrt{2\pi}$.

Ainsi, $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$

B) Espaces $l^1(\mathbb{K})$ et $l^2(\mathbb{K})$

Théorème, définition:

On note $l^1(\mathbb{K})$ l'ensemble des suites $(u_n)_{n\in\mathbb{N}}\in\mathbb{K}^N$ telles que la série $\sum_{n\geqslant 0}|u_n|$ converge. Alors $l^1(\mathbb{K})$ est un \mathbb{K} -ev.

Si de plus on note $N_1\colon l^1(\mathbb{K}) \longrightarrow \mathbb{R}$, alors N_1 est une norme sur le \mathbb{K} -ev $l^1(\mathbb{K})$. $u \longmapsto \sum_{n=0}^{+\infty} |u_n|$

Démonstration:

Déjà, $l^1(\mathbb{K}) \subset \mathbb{K}^N$ et $0 \in l^1(\mathbb{K})$, donc $l^1(\mathbb{K}) \neq \emptyset$.

Soient maintenant $\lambda \in \mathbb{K}$, $u, v \in l^1(\mathbb{K})$.

Alors, pour tout $n \in \mathbb{N}$,

$$\sum_{k=0}^{n} |\lambda u_k + v_k| \le |\lambda| \sum_{k=0}^{n} |u_k| + \sum_{k=0}^{n} |v_k| \le |\lambda| N_1(u) + N_2(u)$$
(2.31)

Donc $\sum_{n\geq 0} |\lambda u_n + v_n|$ converge, donc $\lambda u + v \in l^1(\mathbb{K})$.

De plus, $N_1(\lambda u) = \sum_{k=0}^{+\infty} |\lambda u_k| = |\lambda| N_1(u)$, et $N_1(u+v) = \sum_{k=0}^{+\infty} |u_k + v_k| \le N_1(u) + N_1(v)$.

Donc $l^1(\mathbb{K})$ est un sous-espace vectoriel de $\mathbb{K}^{\mathbb{N}}$, et de plus on a clairement $\forall u \in l^1(\mathbb{K}), N_1(u) \geq 0$.

Soit maintenant $u \in l^1(\mathbb{K})$, supposons que $N_1(u) = 0$.

Alors $\forall n \in \mathbb{N}, u_n = 0$, donc N_1 est une norme sur $l^1(\mathbb{K})$.

Théorème, définition:

On note $l^2(\mathbb{K})$ l'ensemble des suites u de $\mathbb{K}^{\mathbb{N}}$ telles que $\sum_{n\geq 0} |u_n|^2$ soit convergente.

Alors $l^2(\mathbb{K})$ est un \mathbb{K} -ev.

On note
$$\langle \cdot | \cdot \rangle \colon l^2(\mathbb{K}) \longrightarrow \mathbb{K}$$

 $(u,v) \longmapsto \sum_{n=0}^{+\infty} \bar{u}_n v_n$

Alors $\langle \cdot | \cdot \rangle$ est un produit scalaire, et on note N_2 sa norme euclidienne associée.

(On verra plus tard ce qu'est un produit scalaire sur un C-ev)

Démonstration (avec $\mathbb{K} = \mathbb{R}$ pour le produit scalaire) :

- Déjà, $l^2(\mathbb{K})$ est une partie non vide de $\mathbb{K}^{\mathbb{N}}$.
- Soient $\lambda \in \mathbb{K}$, $u \in l^2(\mathbb{K})$. Alors clairement $\sum_{n \geq 0} |\lambda u_n|^2$ converge.
- Soient $u, v \in l^2(\mathbb{K})$.

Alors
$$\forall n \in \mathbb{N}, |u_n + v_n|^2 \le |u_n|^2 + 2|u_n||v_n| + |v_n|^2 \le 2|u_n|^2 + 2|v_n|^2$$

Donc $\sum_{n\geq 0} |u_n + v_n|^2$ converge.

• Ainsi, $l^2(\mathbb{K})$ est un sous-espace vectoriel de $\mathbb{K}^{\mathbb{N}}$

• De plus, l'application $\langle\cdot|\cdot\rangle$ est bien définie et est un produit scalaire :

Soient $u, v \in l^2(\mathbb{R})$.

Alors $\sum_{n\geq 0} \bar{u}_n v_n$ converge:

$$\sum_{k=0}^{n} |\bar{u}_k v_k| \leqslant \frac{1}{2} \sum_{k=0}^{n} |u_k|^2 + \frac{1}{2} \sum_{k=0}^{n} |v_k|^2 \text{ (car pour } (\alpha, \beta) \in \mathbb{R}^2, \ \alpha\beta \leqslant \frac{1}{2} (\alpha^2 + \beta^2))$$

Soit
$$\sum_{k=0}^{n} |\bar{u}_k v_k| \le \frac{1}{2} \sum_{k=0}^{+\infty} |u_k|^2 + \frac{1}{2} \sum_{k=0}^{+\infty} |v_k|^2$$

D'où la convergence. De plus, $\langle u|v\rangle\leqslant\frac{1}{2}\langle u|u\rangle+\frac{1}{2}\langle v|v\rangle\leqslant\frac{1}{2}(N_2(u)^2+N_2(v)^2)$

- \diamond Elle est symétrique : $\sum_{k=0}^{+\infty}u_nv_n=\sum_{k=0}^{+\infty}v_nu_n$
- $\diamond \text{ Lin\'eaire par rapport \`a la premi\`ere variable}: \sum_{k=0}^{+\infty} (\lambda u_n + v_n) w_n = \lambda \sum_{k=0}^{+\infty} u_n w_n + \sum_{k=0}^{+\infty} v_n w_n$
- $\diamond \text{ Positive}: \sum_{k=0}^{+\infty} u_n^2 \geqslant 0.$
- \diamond Définie positive : $\sum_{k=0}^{+\infty} u_n^2 = 0 \implies \forall n \in \mathbb{N}, u_n = 0.$

Vocabulaire:

- N_1 s'appelle la norme de la convergence en moyenne
- N_2 s'appelle la norme de la convergence en moyenne quadratique.
- L'espace $l^1(\mathbb{K})$ est appelé l'espace des suites sommables
- L'espace $l^2(\mathbb{K})$ est appelé l'espace des suites de carré sommable

VII Familles sommables

Problème Soit I un ensemble, $(\alpha_i)_{i\in I}$ une famille d'éléments de \mathbb{K} .

Comment définir $\sum_{i \in I} \alpha_i$ avec de bonnes propriétés?

A) Famille de réels positifs

Définition (sommabilité):

Soit I un ensemble, et $(\alpha_i)_{i\in I}$ une famille de réels positifs. On note $P_f(I)$ l'ensemble des parties finies de I, et, pour $J \in P_f(I)$, $s_J(\alpha) = \sum_{i \in J} \alpha_i$.

On dit que la famille $(\alpha_i)_{i\in I}$ est sommable lorsque $\{s_J(\alpha), J\in P_f(I)\}$ est majoré, et on pose alors $s_I(\alpha) = \sum_{i\in I} \alpha_i = \sum_{J\in P_f(I)} s_J(\alpha)$

Si $(\alpha_i)_{i\in I}$ n'est pas sommable, on pose alors $\sum_{i\in I} \alpha_i = +\infty$.

Définition:

On appelle support de $(\alpha_i)_{i \in I}$ l'ensemble supp $(\alpha) = \{i \in I, \alpha_i \neq 0\}.$

Théorème:

Si $(\alpha_i)_{i\in I}$ est une famille de réels positifs, alors :

 $(\alpha_i)_{i \in I}$ est sommable si et seulement si $(\alpha_i)_{i \in \text{supp}(\alpha)}$ est sommable, et dans ce cas, $\sum_{i \in I} \alpha_i = \sum_{i \in \text{supp}(\alpha)} \alpha_i$.

Démonstration:

Si $(\alpha_i)_{i\in I}$ est sommable, de somme S, alors pour tout $J \in P_f(\operatorname{supp}(\alpha))$, J est aussi une partie finie de I, donc $s_J(\alpha) = \sum_{i\in J} \alpha_i \leqslant S$.

D'où la sommabilité de $(\alpha_i)_{i \in \text{supp}(\alpha)}$, et $\sum_{i \in \text{supp}(\alpha)} \alpha_i \leq S$.

Supposons maintenant que $(\alpha_i)_{i \in \text{supp}(\alpha)}$ est sommable, de somme S.

Pour $J \subset I$ fini, $J \cap \text{supp}(\alpha)$ est finie, et :

$$\sum_{i \in J} \alpha_i = \sum_{i \in J \cap \text{supp}(\alpha)} \alpha_i + \sum_{i \in J \setminus \text{supp}(\alpha)} \alpha_i = \sum_{i \in J \cap \text{supp}(\alpha)} \alpha_i$$
 (2.32)

Donc $\forall J \in P_f(I), \sum_{i \in J} \alpha_i \leq \sum_{i \in \text{supp}(\alpha)} \alpha_i = S$

Donc $(\alpha_i)_{i \in I}$ est sommable, et $\sum_{i \in I} \alpha_i = \sup_{J \in P_f(I)} \sum_{i \in J} \alpha_i \leq S$.

Théorème:

Si $(\alpha_i)_{i\in I}$ est sommable, alors $\operatorname{supp}(\alpha)$ est un ensemble au plus dénombrable.

Démonstration:

Pour $n \in \mathbb{N}$, on pose $J_n = \left\{ i \in I, \alpha_i > \frac{S}{2^n} \right\}$ où S est la somme de $(\alpha_i)_{i \in I}$.

Alors pour tout $n \in \mathbb{N}$, J_n est une partie finie de I, et $\#J_n < 2^n$.

En effet, dans le cas contraire, J_n contiendrait une partie K de cardinal 2^n , et on aurait $\sum_{i \in K} \alpha_i > 2^n \frac{S}{2^n} = S$, ce qui est impossible car $S = \sup_{J \in P_f(I)} \sum_{i \in J} \alpha_i$.

De plus, pour $i \in I$, si $\alpha_i > 0$, alors il existe $n \in \mathbb{N}$ tel que $\alpha_i > \frac{S}{2^n}$.

Donc $\operatorname{supp}(\alpha) = \bigcup_{n \in \mathbb{N}} J_n$, donc $\operatorname{supp}(\alpha)$ est au plus dénombrable.

Remarque:

En pratique, on aura alors $I = \mathbb{N}$ ou \mathbb{Z} ou \mathbb{N}^2 .

B) Familles dénombrables de réels positifs

Théorème:

Soient I un ensemble dénombrable, $(\alpha_i)_{i\in I}$ une famille de réels positifs, $(J_n)_{n\in\mathbb{N}}$ une suite croissante de parties finies de I telles que $I=\bigcup_{n\in\mathbb{N}}J_n$ (on notera $J_n\uparrow I$)

Alors $(\alpha_i)_{i\in I}$ est sommable si et seulement si $(s_{J_n}(\alpha))_{n\in\mathbb{N}}$ admet une limite, auquel cas $\sum_{i\in I}\alpha_i = \lim_{n\to+\infty}\sum_{i\in J_n}\alpha_i$.

Démonstration:

Si $\sum_{i \in I} \alpha_i = S < +\infty$, alors, pour $n \in \mathbb{N}$, $s_{J_n}(\alpha) \leq S$.

De plus, comme $J_n \subset J_{n+1}$, on a $s_{J_n}(\alpha) \leq s_{J_{n+1}}(\alpha)$. Donc la suite $(s_{J_n}(\alpha))_{n \in \mathbb{N}}$ est croissante et majorée, donc converge et $\lim_{n \to +\infty} \sum_{i \in J_n} \alpha_i \leq S$

Supposons maintenant que $(s_{J_n}(\alpha))_{n\in\mathbb{N}}$ admet une limite L.

Montrons déjà un lemme :

Lemme:

Soit $K \in P_f(I)$, alors il existe $n \in \mathbb{N}$ tel que $K \subset J_n$.

En effet : Pour tout $i \in K$, comme $I = \bigcup_{n \in \mathbb{N}} J_n$, il existe $n_i \in \mathbb{N}$ tel que $i \in J_{n_i}$.

Posons alors $n = \max_{i \in K} n_i$. Pour tout $i \in K$, on a alors $n_i \leq n$, donc $i \in J_{n_i} \subset J_n$.

Donc $K \subset J_n$.

Maintenant:

Soit $K \in P_f(I)$. Il existe alors $n \in \mathbb{N}$ tel que $K \subset J_n$, et on a alors $s_K(\alpha) \leq s_{J_n}(\alpha)$.

Comme $(s_{J_n}(\alpha))_{n\in\mathbb{N}}$ converge, on a $s_K(\alpha) \leq L$, et $\sup_{K\in P_f(I)} s_K(\alpha) \leq L < +\infty$.

Donc $(\alpha_i)_{i \in I}$ est sommable, et $\sum_{i \in I} \alpha_i \leq L$.

Théorème:

Soit $(\alpha_i)_{i\in I}$ une famille dénombrable de réels positifs, et $\varphi\colon\mathbb{N}\to I$ une bijection.

Alors $(\alpha_i)_{i\in I}$ est sommable si et seulement si la série $\sum_{n\geqslant 0}\alpha_{\varphi(n)}$ converge, auquel cas $\sum_{i\in I}\alpha_i=\sum_{n=0}^{+\infty}\alpha_{\varphi(n)}$.

Démonstration:

On applique le théorème précédent avec $J_n = \{\varphi(k), k \in [0, n]\}.$

On a alors les équivalences :

$$(\alpha_i)_{i \in I} \text{ est sommable } \iff \left(\sum_{i \in J_n} \alpha_i\right)_{n \in \mathbb{N}} \text{ est major\'ee}$$

$$\iff \left(\sum_{k=0}^n \alpha_{\varphi(k)}\right)_{n \in \mathbb{N}} \text{ est major\'ee}$$

$$\iff \sum_{n \geqslant 0} \alpha_{\varphi(n)} \text{ converge}$$

$$(2.33)$$

Auquel cas $\sum_{i \in I} \alpha_i = \lim_{n \to +\infty} \sum_{k=0}^n \alpha_{\varphi(k)} = \sum_{n=0}^{+\infty} \alpha_{\varphi(n)}$.

Corollaire:

Soit $\sum_{n\geq 0} \alpha_n$ une série à termes positifs, et $\varphi\colon \mathbb{N}\to\mathbb{N}$ une permutation de \mathbb{N} .

Alors $\sum_{n\geqslant 0} \alpha_n$ converge si et seulement si $\sum_{n\geqslant 0} \alpha_{\varphi(n)}$ converge, et dans ce cas :

$$\sum_{n=0}^{+\infty} \alpha_n = \sum_{n=0}^{+\infty} \alpha_{\varphi(n)} = \sum_{n \in \mathbb{N}} \alpha_i$$
 (2.34)

Théorème:

Si $(\alpha_i)_{i\in I}$ est une famille sommable, et si J est une partie de I, alors $(\alpha_i)_{i\in J}$ est sommable, et $\sum_{i\in J}\alpha_i \leq \sum_{i\in I}\alpha_i$.

Démonstration:

Pour tout $K \in P_f(J)$, on a $K \in P_f(I)$, donc $\sum_{i \in K} \alpha_i \leq \sum_{i \in I} \alpha_i$, puis en passant à la borne supérieure, $\sum_{i \in J} \alpha_i \leq \sum_{i \in I} \alpha_i$.

\mathbb{C}) Familles sommables de \mathbb{R} ou \mathbb{C}

On note ici $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

Définition:

Soit $(u_i)_{i\in I}$ une famille d'éléments de \mathbb{K} . On dit que cette famille est sommable lorsque $\sum_{i\in I} |u_i| < +\infty$.

Remarque:

La famille $(u_i)_{i\in I}$ est alors à support au plus dénombrable, on supposera donc I dénombrable.

Théorème, définition:

Soit $(u_i)_{i\in I}$ une famille sommable de \mathbb{K} . Soit $(J_n)_{n\in\mathbb{N}}$ une suite de parties finies de I telle que $J_n\uparrow I$. Alors :

- (1) La suite $(s_{J_n}(u))_{n\in\mathbb{N}}$ est convergente.
- (2) Sa limite ne dépend pas du choix de la suite $(J_n)_{n\in\mathbb{N}}$, on la note $\sum_{i\in I} u_i$.
- (3) On a de plus $|\sum_{i \in I} u_i| \leq \sum_{i \in I} |u_i|$.

Démonstration:

(1) Comme I est sommable, $(|u_i|)_{i\in I}$ est sommable dans \mathbb{R}_+ .

Donc la suite $(s_{J_n}(|u|))_{n\in\mathbb{N}}$ converge, et est alors de Cauchy :

Soit $\varepsilon > 0$. Il existe $n_0 \in \mathbb{N}$ tel que $\forall n \ge n_0, \forall p \in \mathbb{N}, s_{J_{n+p}}(|u|) - s_{J_n}(|u|) \le \varepsilon$.

Soient donc $n \ge n_0$ et $p \in \mathbb{N}$:

$$|s_{J_{n+p}}(u) - s_{J_n}(u)| = \left| \sum_{i \in J_{n+p}} u_i - \sum_{i \in J_n} u_i \right| = \left| \sum_{i \in J_{n+p} \setminus J_n} u_i \right| \operatorname{car} J_n \subset J_{n+p}$$

$$\leq \sum_{i \in J_{n+p} \setminus J_n} |u_i| = s_{J_{n+p}}(|u|) - s_{J_n}(|u|) \leq \varepsilon$$

$$(2.35)$$

Donc la suite $(s_{J_n}(u))_{n\in\mathbb{N}}$ est de Cauchy, donc converge.

(2) Soit $(K_n)_{n\in\mathbb{N}}$ une autre suite de parties finies telle que $K_n \uparrow I$.

On note $S = \lim_{n \to +\infty} s_{J_n}(u)$; montrons que $s_{K_n}(u) \xrightarrow[n \to +\infty]{} S$.

Soit $\varepsilon > 0$, et $n_0 \in \mathbb{N}$ tel que $\forall n \ge n_0, \forall p \in \mathbb{N}, s_{J_{n+p}}(|u|) - s_{J_n}(|u|) \le \frac{\varepsilon}{2}$

En particulier (calcul précédent), $\forall n \geq n_0, |S - s_{J_n}(u)| \leq \frac{\varepsilon}{2}$.

D'après le lemme vu dans la sous-section précédente, il existe $n_1 \in \mathbb{N}$ tel que $\forall n \geq n_1, J_{n_0} \subset K_n$.

De plus, pour $n \ge n_1$, il existe $p \in \mathbb{N}$ tel que $K_n \subset J_{n_0+p}$

D'où
$$|s_{K_n}(u) - S| \leq \left|s_{K_n}(u) - s_{J_{n_0}}(u)\right| + \left|s_{J_{n_0}}(u) - S\right| \leq \sum_{i \in K_n \setminus J_{n_0}} |u_i| + \frac{\varepsilon}{2} \leq \sum_{i \in J_{n_0+p} \setminus J_{n_0}} |u_i| + \frac{\varepsilon}{2} \leq \varepsilon$$

Ainsi, on a trouvé $n_1 \in \mathbb{N}$ tel que $\forall n \geq n_1 | s_{K_n}(u) - S | \leq \varepsilon$

(3) conséquence du calcul précédent :

$$|s_{J_n}(u)| \leq s_{J_n}(|u|)$$
 et, par passage à la limite, $|\sum_{i \in I} u_i| \leq \sum_{i \in I} |u_i|$

Théorème:

Soit $(u_i)_{i\in I}$ une famille dénombrable de \mathbb{K} , et $\varphi\colon \mathbb{N}\to\mathbb{N}$ une bijection.

Alors $(u_i)_{i\in I}$ est sommable si et seulement si $\sum_{n\geqslant 0}u_{\varphi(n)}$ est absolument convergente, et si c'est le cas, $\sum_{i\in I}u_i=\sum_{n=0}^{+\infty}u_{\varphi(n)}$.

Démonstration:

Il suffit de prendre $J_n=\varphi([\![0,n]\!])$ dans le théorème précédent.

Corollaire:

Si $(u_n)_{n\in\mathbb{N}}$ est une suite de \mathbb{K} , et si φ est une permutation de \mathbb{N} , alors $\sum_{n\geqslant 0}u_n$ est convergente si et seulement si $\sum_{n\geqslant 0}u_{\varphi(n)}$ l'est, et dans ce cas, $\sum_{n=0}^{+\infty}u_{\varphi(n)}=\sum_{n=0}^{+\infty}u_n=\sum_{n\in\mathbb{N}}u_n$.

Théorème:

Toute sous-famille d'une famille sommable est sommable.

Démonstration:

Soit $J \subset I$ et $(u_i)_{i \in I}$ sommable.

Alors (dernier théorème du B)) :

 $\sum_{i \in J} |u_i| \leqslant \sum_{i \in I} |u_i|$, donc $(u_i)_{i \in J}$ est sommable (car $\sum_{i \in J} |u_i|$ est majoré donc converge)

Théorème (sommation par paquet – hors programme):

Soit $(u_i)_{i\in I}$ une famille d'éléments de \mathbb{K} , et $I=\bigcup_{k\in K}J_k$ une partition de I indexée par un ensemble K.

Alors $(u_i)_{i\in I}$ est sommable si et seulement si :

- Pour tout $k \in K$, $(u_i)_{i \in J_k}$ est sommable.
- Et $(\sum_{i \in J_k} |u_i|)_{k \in K}$ est sommable,

Auquel cas $\sum_{i \in I} u_i = \sum_{k \in K} \sum_{i \in J_k} u_i$.

D) Familles sommables indexées par \mathbb{Z} ou $\mathbb{N} \times \mathbb{N}$

Théorème:

Soit $(u_n)_{n\in\mathbb{Z}}$ une famille de \mathbb{K} .

Alors $(u_n)_{n\in\mathbb{Z}}$ est sommable si et seulement si les séries $\sum_{n\geqslant 0}u_n$ et $\sum_{n\geqslant 0}u_{-n}$ sont absolument convergentes, auquel cas $\sum_{n\in\mathbb{Z}}u_n=\sum_{n=0}^{+\infty}u_n+\sum_{n=1}^{+\infty}u_{-n}=\lim_{n\to+\infty}\sum_{k=-n}^nu_k$.

Démonstration :

On applique le théorème de sommation par paquets à $K = \{0, 1\}$, $J_0 = \mathbb{N}$ $J_1 = \mathbb{Z} \setminus \mathbb{N}$ D'où on tire l'équivalence.

Attention: Par exemple, $(u_n)_{n\in\mathbb{Z}}$ où $u_n=\sin n$ n'est pas sommable, mais $\forall n\in\mathbb{N}, \sum_{k=-n}^n u_k=0$.

Théorème (Fubini):

Soit $(u_{n,p})_{(n,p)\in\mathbb{N}\times\mathbb{N}}$ une famille de \mathbb{K} . Les propositions suivantes sont équivalentes :

- 1. $(u_{n,p})_{(n,p)\in\mathbb{N}\times\mathbb{N}}$ est sommable
- 2. Pour tout $n \in \mathbb{N}$, la série $\sum_{p \ge 0} u_{n,p}$ est absolument convergente, et, en posant $s_n = \sum_{p=0}^{+\infty} |u_{n,p}|$, la série $\sum_{n \ge 0} s_n$ est convergente.
- 3. Pour tout $p \in \mathbb{N}$, la série $\sum_{n \geq 0} u_{n,p}$ est absolument convergente, et, en posant $\sigma_n = \sum_{n=0}^{+\infty} |u_{n,p}|$, la série $\sum_{p \geq 0} \sigma_p$ est convergente.

De plus, si ces propositions sont vérifiées, $\sum_{(n,p)\in\mathbb{N}\times\mathbb{N}}u_{n,p} = \sum_{n=0}^{+\infty}\left(\sum_{p=0}^{+\infty}u_{n,p}\right) = \sum_{p=0}^{+\infty}\left(\sum_{n=0}^{+\infty}u_{n,p}\right).$

Démonstration:

C'est un cas particulier du théorème de sommation par paquets.

Exemple d'application Pour $\alpha > 1$, la série $\sum_{n \ge 1} \frac{1}{n^{\alpha}}$ converge, et on pose $\xi(\alpha) = \sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$ (fonction Zêta de Riemann). Pour $p \ge 2$, on pose $u_p = \xi(p) - 1$. La série $\sum_{p \ge 2} u_p$ converge-t-elle?

Étude:

Si la série converge, alors la famille $(\frac{1}{n^p})_{\substack{n\geqslant 2\\p\geqslant 2}}$ est sommable.

On peut donc appliquer le théorème de Fubini :

$$\sum_{p=2}^{+\infty} u_p = \sum_{p=2}^{+\infty} \left(\sum_{n=2}^{+\infty} \frac{1}{n^p} \right) = \sum_{n=2}^{+\infty} \left(\sum_{p=2}^{+\infty} \frac{1}{n^p} \right) = \sum_{n=2}^{+\infty} \frac{1/n^2}{1 - 1/n} = \sum_{n=2}^{+\infty} \frac{1}{n - 1} - \frac{1}{n} = 1$$
 (2.36)

Maintenant:

Pour tout $n \ge 2$, la série de terme général $\frac{1}{n^p}$ converge, et $\sum_{p=2}^{+\infty} \frac{1}{n^p} = \frac{1}{n(n-1)}$.

De plus, $\sum_{n\geqslant 2} \frac{1}{n(n-1)}$ converge vers 1.

Donc d'après le théorème de Fubini, $(\frac{1}{n^p})_{\substack{n \geq 2 \\ p \geq 2}}$ est sommable, et les calculs vus dans l'étude on bien un sens; donc la série $\sum_{p \geq 2} \xi(p) - 1$ est convergente.

E) Produit de Cauchy

Définition:

Soient $u, v \in \mathbb{K}^{\mathbb{N}}$. On appelle produit de Cauchy de u et v la suite w définie par :

$$\forall n \in \mathbb{N}, w_n = \sum_{k=0}^n u_k v_{n-k} = \sum_{\substack{p+q=n\\ (p,q) \in \mathbb{N}^2}} u_p v_q \tag{2.37}$$

On note alors w = u * v.

Théorème:

Soient $\sum_{n\geq 0} u_n$ et $\sum_{n\geq 0} v_n$ deux séries absolument convergentes. Alors la série $\sum_{n\geq 0} (u*v)_n$ est absolument convergente, et :

$$\sum_{n=0}^{+\infty} (u * v)_n = \left(\sum_{n=0}^{+\infty} u_n\right) \left(\sum_{n=0}^{+\infty} v_n\right) \qquad \text{ou} : \sum_{n=0}^{+\infty} \sum_{\substack{p+q=n\\ (p,q) \in \mathbb{N}^2}} u_p v_q = \left(\sum_{n=0}^{+\infty} u_n\right) \left(\sum_{n=0}^{+\infty} v_n\right)$$
(2.38)

Démonstration:

On étudie la sommabilité de $(u_p v_q)_{\substack{n \geq 2 \\ p \geq 2}}$:

• Pour $p \in \mathbb{N}$, $\sum_{q \geqslant 0} u_p v_q$ est absolument convergente, et $\sum_{k=0}^{+\infty} |u_p v_q| = |u_p| \sum_{q=0}^{+\infty} |v_q|$. De plus, la série $\sum_{p \geqslant 0} \left(|u_p| \sum_{q=0}^{+\infty} |v_q| \right)$ est convergente, de somme $\sum_{p=0}^{+\infty} |u_p| \times \sum_{q=0}^{+\infty} |v_q|$ Ainsi, d'après le théorème de Fubini, on a :

$$\sum_{(p,q)\in\mathbb{N}^2} u_p v_q = \sum_{p=0}^{+\infty} \left(\sum_{q=0}^{+\infty} u_p v_q \right) = \sum_{p=0}^{+\infty} u_p \left(\sum_{q=0}^{+\infty} v_q \right) = \left(\sum_{q=0}^{+\infty} v_q \right) \left(\sum_{p=0}^{+\infty} u_p \right)$$
(2.39)

• Calculons maintenant cette somme au moyen de la suite $(J_n)_{n\in\mathbb{N}}$ de parties finies de \mathbb{N}^2 définie par $J_n = \{(p,q) \in \mathbb{N}^2, p+q \leq n\}$. On a alors $J_n \uparrow \mathbb{N}^2$.

Donc
$$\sum_{(p,q)\in\mathbb{N}^2} u_p v_q = \lim_{n\to+\infty} \sum_{(p,q)\in J_n} u_p v_q = \lim_{n\to+\infty} \left(\sum_{k=0}^n \sum_{p+q=k} u_p v_q\right) = \sum_{n=0}^{+\infty} (u*v)_n$$
 Donc déjà $\sum_{n\geq 0} (u*v)_n$ converge.

• Par le même raisonnement, on a $\underbrace{\sum_{(p,q)\in\mathbb{N}^2}|u_pv_q|}_{\text{fini}} = \lim_{n\to+\infty}\sum_{k=0}^n\sum_{p+q=k}|u_pv_q|\geqslant \sum_{k=0}^n|(u*v)_k|$

Donc $\sum_{n\geq 0} (u*v)_n$ est absolument convergente.

Exemple:

 $\exp\colon (\mathbb{C},+) \to (\mathbb{C}^*,\times)$ est un morphisme de groupes :

- $\exp(0) = \sum_{n=0}^{+\infty} \frac{0^n}{n!} = 1$
- Soient $a, b \in \mathbb{C}$.

Les séries $\sum_{n\geqslant 0}u_n$ et $\sum_{n\geqslant 0}v_n$ où $u_n=\frac{a^n}{n!}$ et $v_n=\frac{b^n}{n!}$ sont absolument convergentes.

Donc $\sum_{n\geq 0} w_n$ où w=u*v est absolument convergente, et $\sum_{n=0}^{+\infty} w_n = \left(\sum_{n=0}^{+\infty} u_n\right) \left(\sum_{n=0}^{+\infty} v_n\right)$.

Or, pour $n \in \mathbb{N}$, $w_n = \sum_{k=0}^n \frac{a^k}{k!} \frac{b^{n-k}}{(n-k)!} = \sum_{k=0}^n \frac{1}{n!} C_n^k a^k b^{n-k} = \frac{1}{n!} (a+b)^n$.

Donc par passage à la limite, $\exp(a+b) = \exp(a) \times \exp(b)$.

• De plus, pour $a \in \mathbb{C}$, on a :

$$\exp(a) \times \exp(-a) = \exp(0) = 1$$
, donc $\exp(a) \neq 0$.

Ainsi, $\exp(\mathbb{C}) \subset \mathbb{C}^*$, et exp est bien un morphisme.